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Abstract

Classical Floquet theory is examined in order to

generate a canonical transformation to modal variables for

periodic systems. This transformation is considered

canonical if the periodic matrix of eigenvectors is

symplectic at the initial time. Approaches for symplectic

normalization of the eigenvectors had to be examined for

each of the different Poincard eigenvalue cases. Particular

attention was required in the degenerate case, which

depended on the solution of a generalized eigenvector.

Transformation techniques to ensure real modal variables and

real periodic eigenvectors were also needed.

Periodic trajectories in the restricted three-body case

were then evaluated using the canonical Floquet solution.

The system used for analyses is the Sun-Jupiter system.

This system was especially useful since it contained two of

the more difficult Poincar6 eigenvalue cases, the degenerate

case and the imaginary eigenvalue case. The perturbation

solution to the canonical modal variables was examined using

both an expansion of the Hamiltonian and using a

representation that was considered exact. Both methods

compared quite well for small perturbations to the initial

condition. As expected, the expansion solution failed first

due to truncation after the third order term of the

expansion.
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CANONICAL FLOQUET PERTURBATION THEORY

I. Introduction

Analysis techniques of periodic systems have been

available for many years since Floquet's work on time

periodic linear systems in 1883. The primary use of Floquet

theory is to find the characteristic or Poincar6 exponents

of the system and thereby determine the stability of the

periodic system. In more recent studies, Floquet theory has

been used to construct a set of periodic modal vectors for

analysis (Wiesel, 1981; Calico and Wiesel, 1984; Ross,

1991). Unfortunately, none of these works noted that

standard Floquet theory is not canonical. In order to find

a useful set of periodic modal variables, a canonical

version of Floquet theory must be found.

This study will look at the required methods needed to

produce a canonical transformation from a time periodic

linear Hamiltonian system to modal variables using Floquet

theory. Special attention will be given to the various

types of Poincard exponents encountered in these types of

systems.

One of the many interesting applications for canonical

Floquet theory is that of periodic orbits in celestial

mechanics. As is generally known, the two-body system "is

1



the only gravitational problem for which a closed-form

solution has been found" (Wiesel, 1989:45). But in

searching for exact two-body systems in our solar system

alone, it is apparent that perturbations due to other bodies

must be considered.

Therefore, while canonical Floquet theory is then the

primary focus of this study, a secondary emphasis will be on

the analysis of the restricted three-body orbit. The

particular system to be looked at is the Sun-Jupiter system.

While by no means the most interesting system dynamically,

its mass ratio of 9.5388E-4 makes the study easier to handle

at this stage.
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II. Historical Development

The initial groundwork for analysis of periodic systems

was laid out by Floquet as described in Chapter I. A

detailed search of the library's resources turned up very

little information that expanded on the work of Floquet or

would help in this study. The majority of the work found in

the areas of this study is that of Dr. Wiesel and Capt Ross.

2.1 Canonical Transformations

In Ross (1991), a method for finding a set of modal

vectors from a periodic system was defined, but the

canonical behavior of the transformation was not adequately

considered. As defined, there are actually two

transformations required to change the original Hamiltonian

into modal coordinates. The second, or modal transformation,

was shown with great detail to be canonical (Wiesel,

1981:232-234; Pars, 1965:453-483). But, the first, or

Floquet transformation, was not completely examined until

Dr. Wiesel's discovery of a proof for this transformation

(Siegel and Moser, 1971:99-101). This proof is presented in

Chapter III. Armed with these tools, the canonical

transformations using Floquet theory could now be completely

tackled.

2.2 Real Canonical Transformations

In working on this effort, it was found that the

3



standard transformations did not always yield real modal

vectors, and an additional study in transforming complex

eigensystems into real eigensystems was accomplished. This

was a significantly easier task, in comparison to the first,

as much has been written in linear algebra and matrix

algebra textbooks on these types of transformations.

2.3 Perturbation Theory on Periodic Orbits

The only source for this part of the study was the work

by Ross where he states "It is unique to use the

eigenvectors and Poincar6 exponents of the periodic

trajectory, to canonically transform the generic equations

of motion into nearly-periodic ones" (Ross, 1991:3). While

Ross's work followed the theory of Dr. Wiesel, his was

indeed the first to significantly analyze the possibilities

of these methods.
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III. Theory

3.1 Classical Floquet Theory

In classical Floquet theory, given a Hamiltonian system

where H(X,t) is the Hamiltonian function, and the state

vector is

S= (ql,P l, q21 P 2, . . . . ,q 1 ,p l) , i=l,n (1)

The Hamiltonian equations of motion are then defined as

qaH and 6, aH i=l,n (2)

for each coordinate, q,, and its conjugate momenta, p,.

This can be more compactly written as

I= aH
X 9-X(3)

where Z is a correlation matrix defined as

"0 1 0 0...
-1 0 0 0

z = 0 0 0 1 ... (4)

0 0 -1 0

and Z is of order 2N (the number of coordinates and momenta

in the state vector) (Wiesel, 1981:232,233). Since the

5



matrix Z is skew-symmetric and has a determinant equal to

one, it follows the well established facts that

ZV = Z-1 = -Z. The equations of variation then come from the

linearization of the Hamiltonian equations of motion. This

is accomplished by differentiating Eq(3) by the state vector

yielding

O Z = A(t) (5)
-~ O2

Here A(t) is the linearization of the dynamics and the

equations of variation become

2= A(t)X = Z 2f (6)
ax2

(Ross, 1991:10,11). Here A indicates coordinates on the

tangent space of the system defined by Eq(3) (i.e., on a

trajectory near the periodic motion). From this, a general

solution, close to the periodic system of Eq(3), can be

written using the fundamental matrix (D(t,t 0 ), as

X(t) =cD(t,t 0 )N(to) (7)

where the fundamental matrix also obeys

d (0) = A(t)4 = Za2,(8)

6



Given that the original system does include a periodic

motion, then both Eqs(6) and (8) are time periodic linear

differential equations. Note that the equations of

variation actually arise from a first order Taylor series

expansion of the original Hamiltonian about its nominal

trajectory X(t)

?{= 1 X Ta 2H ' (9)

The main conclusion of classical Floquet theory then is

that the periodic fundamental matrix (D can be decomposed

into

4)(t, to) = F(t) eJ(t-to) 1 (t,) (10)

where F(t) is periodic and J is a Jordan normal form.

The Floquet solution then is obtained by integration of

Eqs(3) and (8) over one period of the motion. One result is

the monodromy matrix cI(t+toto), where t is the period. The

matrix F(T) is then the system eigenvectors and exp{J'} is

the system eigenvalues at one period. More specifically, J

is a Jordan normal matrix of Poincard exponents, (0\. These

(q, then describe the stability of the system (Pars,

1965:461-467) . Once (D(t+to, t) is found, and noting F(to+T)

= F(to) Eq(10) can be rewritten

7



S= FeFI(11)

where the time indices on 4D and F have been dropped due to

their periodic nature. A standard math package can now be

used on (D to find the system eigenvalues, X,, and the system

eigenvectors, EL. These eigenvectors are placed in the

columns of the F matrix and the eigenvalues are the diagonal

elements of the exp{JJ} matrix. The diagonal elements of J

are then found using

Wt = ln (X') (12)

or more conveniently for complex eigenvalues,

Re(o 1 ) = •ln[Re(X1) 2+IMr(4 1 )2 ]

1 ra.Tm(x) 1 (13)
IMm((D) = tan- _I(4)

It is worth noting at this time that the Poincard

exponents occur only in positive/negative pairs for a

canonical system. This leads to exactly four possible types

of Hamiltonian coordinate/momenta pairs: 1)

positive/negative real 01 , 2) positive/negative imaginary

ck, 3) a pair of zero ak, and 4) a 'box' or

positive/negative pair of complex conjugate cqt. Only the

first three will be examined in detail in this study.

8



Completion of the Floquet solution at this point

requires knowledge of F(t) over one period. Differentiating

Eq(ll) and substituting in Eq(8) and (10) yields

P(t) = Za2H .F(t)-F(t)J (14)

A complete solution to the equations of variation, through

Eq(7), can now be characterized over one period of the

motion. Knowledge of F over one period also allows for a

transformation to a set of periodic modal variables, 9(t)

through the relationship

F(t) = F 1X(t) (15)

by the following derivation

1(t) = 4(t, to)x(to)
1(t) = F(t) eJ(t-t°I F' (to) N(to)

r1(t)]I(t) = eJ't-t°JF1(to)x(to)

F(t) = eJ~t-t°)F(to) (16)

To be useful for further study, this transformation needs to

be canonical.

3.2 Canonical Floquet Theory

The most important criterion for a canonical

transformation is that the new Hamiltonian must also follow

Eq(3), that -s

9



Za (17)

where K is the new system Hamiltonian and Y the new system

state vector. In order to ensure this, the original system

eigenvector matrix, F, must satisfy the relation

Z = FTZF (18)

In other words, this means that the new Hamiltonian

equations of motion also follow Eq(2) for the new state

vector and the same correlation matrix. The formal proof

defines the eigenvector matrix that satisfies Eq(18) as the

symplectic eigenvector matrix (Siegel and Moser: 1971,99-

101). As in other work with canonical systems, this

transpose of F is a standard transpose and not a Hermitian

transpose. Equation (18) for a canonical transformation is,

unfortunately, only applied to constant eigenvector systems

in Siegel and Moser. Proof of its usefulness in a periodic

system must be shown before this study can continue. Since

Z is a constant matrix,

t = PTZE+FTZP (19)

must equal zero. Combining Eqs(5), (14), (19), using the

identity relations for Z, and assuming Eq(18) holds true,

(19) reduces to

10



-J'Z-ZJ = 0 (20)

Since J and Z are constant over the period of the motion,

direct substitution will prove Eq(20) true for either the

degenerate or non-degenerate case. Therefore, Eq(18) also

holds true for a periodic system of eigenvectors (Wiesel and

Pohlen, 1992:7).

If F forms a canonical transformation, what is the new

Hamiltonian? Differentiating Eq(16) yields

y(t) = Jej(t t -)y(to) = J7(t) (21)

where, as in equation (6), J must be of the form A(t) or

J a A(t) = Z a2K = ZS (22)ay 2

With S defined as a 2K/a, 2, the new equations of variation

come from the new variational Hamiltonian

ST (23)

(Wiesel and Pohlen, 1992:7)

3.2.1 Symplectic Normalization for Real Poincard
Exponents/Independent Eigenvectors

For a first look at symplectic normalization, consider

the case where each Poincard exponent generates a unique

real eigenvector. The symplectic eigenvectors, N, can

11



differ from the original eigenvectors, 9., by only a

constant d,. In matrix notation this would be

E = FD (24)

with D a diagonal matrix of constant multipliers, and E the

symplectic eigenvector matrix. Substituting FD into Eq(18)

for F yields, after rearrangement,

D-'ZD-1 = F'ZF (25)

The form of the left hand side of Eq(25) is

0 10 0

1 0 0 0

D-1 ZD-1 = 0 0 i, i=1,2N (26)

0 0 0

1

If the d. are selected to satisfy Eq(25) then D will

transform F into the symplectic Z. This then allows some

freedom in the selection of the d,. Siegel and Moser

suggest the selection of one for all the odd dj, which then

uniquely determines the corresponding even d,. This method

generates one possible multiplier matrix, D, and through

Eq(24) a symplectic transformation matrix, Z, for any system

12



with unique real t, (Siegel and Moser, 1971:101).

3.2.2 Symplectic Normalization for Imaginary Poincard
Exponents/Complex Conjugate Eigenvectors

Unfortunately, not all of a system's q, pairs can be

normalized as easily as pairs of positive/negative reals

with real eigenvectors. In the case of imaginary pairs,

where the associated eigenvectors will be complex conjugate

pairs, the procedure as outlined by Siegel and Moser would

result in two different multipliers that would destroy the

complex conjugate nature of the eigenvectors. Fortunately,

this problem is easy to solve. If we look at one particular

multiplier pair entry in Eq(26)

(D-1ZD-1) 12 = 1 = (F TZF) 12  (27)

where the subscripts on F'ZF and D-'ZD-l signify the row and

column respectively of these matrix products. For this to

result in a symplectic transformation and in order to

maintain the complex conjugate eigenvectors, d, must equal

d2 . Therefore the multiplier for both eigenvectors, d1 , 2, is

found simply from

(1\1

di,2 = ) I (28)

The fact that the scale factors are coupled is not
surprising. While the eigenvectors of a linear system

13



can usually be normalized independently, in a canonical
problem they must be normalized as canonical pairs.
(Wiesel and Pohlen, 1992:10)

Therefore, this method is also appropriate for use on a pair

of eigenvectors associated with real a\.

3.2.3 Symplectic Normalization for a Pair of Zero PoincarC
Exponents/Repeated Eigenvectors

This study would not be complete without a look at the

degenerate case of a pair of zero (o. The degenerate case

commonly occurs in a Hamiltonian system with conserved

quantities. Equally common is a rank deficiency in the

eigenvector matrix when a pair of zeros is encountered.

That is, there will be a repeated eigenvector (Wiesel and

Pohlen, 1992:10).

3.2.3.1 Determination of Generalized Eigenvector

The first task in the symplectic normalization of the

degenerate case is to determine the generalized or extended

eigenvector that removes the rank deficiency in F. The

generalized eigenvector, , is found using

= - (29)

for a constant coefficient case (Reid, 1983:346). But in a

periodic system where the form of exp(Ji) and the eigenvalue

matrix are, respectively,

1 0 and e= A = i(30)

14



and the more appropriate form of Eq(29) is then written

= Y (31)

As a check on the new F with the extended eigenvector, the

system should satisfy 4U'-FA=O. Note from Eq(31) that the

generalized eigenvector is not entirely arbitrary and

therefore cannot be normalized in the standard fashion. It

will, however, be indeterminable to an additive multiple of

the repeated eigenvector. In fact,

•e, = r -+C,+ (32)

defines a generalized eigenvector for any value of a (Wiesel

and Pohlen, 1992:10).

3.2.3.2 Normalization for the Degenerate Case

Because of the arbitrary value of a, the multiplier

matrix, D, is not necessarily diagonal. Instead it will be

of the form

DJ a] (33)

for the repeated/generalized eigenvector pair. Since D is

no longer diagonal, Eq(25) will also change to

(DT) -ZD- 1 = FTZF (34)

15



since D2 is no longer equal to D. After the required math

on the left hand side of Eq(34), the result for a degenerate

pair of eigenvectors is the same as that for any other pair

in Eq(26), or

(DT ) - 1ZD-1 = - U2 (35)

Equation (35) demonstrates that the arbitrary multiple a

really is arbitrary, and is just as well chosen as zero. In

the degenerate case, the multipliers d, and d 2 must be the

same, due to the specific relationship between the repeated

eigenvector and the generalized eigenvector defined in

Eq(31). Whereas in the case of a pair of complex conjugate

eigenvectors, the multipliers are chosen to be the same for

the convenience of maintaining conjugate pairs of

eigenvectors.

Therefore, the symplectic normalization for each pair

of eigenvectors follows the same procedure. First the

matrix of values FIZF are found. Then multipliers are found

by applying Eq(28) zo each pair of eigenvectors.

The value for a (FrZF)1 ,,1+ pair will commonly be a

negative or a complex number. This inevitably results in a

set of symplectic eigenvectors that are complex and thus a

set of complex modal variables. This becomes very

inconvenient for analysis of the modal variables.

16



3.3 Real Valued Symplectic Eigenvectors

Looking at the new variational Hamiltonian as defined

in Eq(23), the matrix S can be found with the aid of Eq(22),

since

S = Z-1 J = -Z (36)

where again, S is defined as a2K/l>i 2, or the second partial

of the new Hamiltonian with respect to the new state vector.

It will be the variational Hamiltonian, 9t, rather than the

system Hamiltonian, K, that will be of concern in the

following sections. Therefore, the value of S will be of

primary importance.

3.3.1 Real Transformations for Non-degenerate Cases

For any system without a degenerate mode, the J matrix

will be of the form

(37)

Using Eq(37) in Eq(36), S is of the form

s = --
The variational Hamiltonian of Eq(23) can then be written as

17



2N-1

9t= Y Y oYY'yj , i=odd integers (39)

for each pair of Poincar6 exponents. Equation (39) provides

the following equations of variation

Y1= =1 1y1  (i=odd integers)a (40)
Y -1 - = -Y 1y 1÷ (i=odd integers)

which have the simple solutions

y, = y.oew' Yl÷ = y,. 1oe--it (41)

Again, this is easily applied when (w are real, but for

imaginary (q, the result is a pair of complex valued modal

variables. This results in the need for another

transformation to ensure real modal variables. A

transformation will also be required to produce real

symplectic eigenvectors in order to make integrations of the

eigenvectors easier to implement in computer code. In some

cases, these transformations can be accomplished with the

same transformation matrix.

The matrix that will transform the imaginary pairs of

ak in the J matrix is defined as

18



T- (42)

(Strang, 1988:298). Recall that any transformation to a

canonical system must obey Eq(18); therefore in this

transformation, TTZT must equal Z. To meet this

requirement, Eq(42) is found to be

TA t t (43)

and will be defined as a type A transformation matrix.

Using T,, in Eq(ll) becomes

S= Z T le (• .' ". TALK- (44)

The matrices E, J, and S are also redefined as

Z ' -- E (T A ) -I(4 5 )

T ( = [ 0 to),] (46)J'1 =TAJ, (TA) -1 _ O

= [twj / 0)] (47)
1 09
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Although this transformation creates a real J and therefore

a real S, the resulting symplectic eigenvectors will become

either purely real or purely imaginary. Ensuring that these

eigenvectors are real can be accomplished through another

transformation matrix, or a type B transformation defined as

TB, [t t] (48)

Following the same method as with a type A transformation,

E, J, and S become

EZ Z = E (T9 ) - (49)

* twoj (50)
j 1' TBJ'Tl(TB)-I It•ct -0• ( 0

S= = [-tco (0] (51)

A fully populated T. matrix will be block diagonal with a T,,

for each pair of imaginary co) and an identity matrix for all

other pairs of co. Likewise, a fully populated T. matrix

will be block diagonal with a T. for each pair of imaginary

P, and an identity matrix for all other pairs of •.

3.3.3 Real Transformations for Degenerate Cases
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In the degenerate case, the J, submatrix will always be

real, so a type A transformation will never be necessary.

As in the non-degenerate case, the symplectic P. can be

purely imaginary as a result of symplectic normalization,

and therefore a type B transformation should be applied.

The effect on E will be the same as that in Eq(49), but

since the original form of J and S in the degenerate case

are

J= [ and S [ (52)

the transformation results in

J= [•0]and S1/ [O1 •] (53)

3.4 Modal Variables and Z After Real Canonical

Transformation

While Eq(23) is still valid for the variational

Hamiltonian, the specific form for the ith portion of Eq(38)

will now have six different possibilities. These six

different variations are outlined in Appendix A.

The final results of the last several sections is that

Floquet theory can be applied to any time periodic system

and result in a real canonical transformation to modal

variables through R(t) = E(t)q(t). There will also be a
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Jordan-like normal form J that is real valued over the

period of the system (Wiesel and Pohlen, 1992:14).

Regardless of the specific form for the variational

equations of motion, the time periodic symplectic

eigenvectors can be characterized over one period through

Eq(14) and will remain real over that period.

In characterizing the motion of the system, the initial

state vector, i, and the transformation matrix, Z, can be

integrated over one period with their values sampled at

regular intervals. These values are then converted into a

set of Fourier coefficients to be used in construction of

the perturbation solutions (Brower and Clemence, 1961:108-

112). "The advantage of the Rourier representation is that

the coefficients may be reassembled into the periodic orbit

at any time necessary" (Ross, 1991:28).

3.5 The Restricted Three-Body Problem

With the theory for canonical Floquet theory developed,

it becomes important to examine a specific periodic system

to validate the usefulness of the theory. In the case of

this study, the restricted three-body problem presented by

Ross will be used. The particular system examined is the

Sun-Jupiter system. Only the pertinent equations and

information will be presented here, while the reader is

referred to Ross (1991) for detailed derivations.

The definition of the restricted three-body problem was

first presented by Euler in 1772. The problem is defined
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as:

Two bodies revolve around their center of mass in
circular orbits under the influence of the mutual
gravitational attraction and a third body (attracted by
the previous two but not influencing their motion)
moves in the plane defined by the two revolving bodies.
The restricted problem of three bodies is to describe
the motion of this third body. (Szebehely, 1967:8)

In setting up the three-body problem, Ross first defines

several non-dimensional quantities. These are:

m M , m2 = M 2 , m3 = 0 (54)

S1  S2 (55)
si _%_% I s 2 +÷S

where M, and M2 are the masses of the primary bodies and M3

is the mass of the third body which is negligible. S, and

S2 are the distances from the primary bodies to the system

center of mass. Since s 1+s 2 = m1 +m2 =, these quantities

are then redefined with a single dimensionless variable g.

s, = m2 = j, s 2 = Ml = 1- (56)

The relationship of these dimensionless quantities are shown

in Figure 1 (Ross, 1991:4-6).

The Hamiltonian for the restricted three-body system is

then defined by Ross as
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1 (pPp• ) +PIq2-P2- (57)H -- r1  -r2

where

1

r [(q 1l-) 2+q] 7 (58)
r2 =[(ql+l -g) 2+q22]-

and the system state vector is

XT (t) = [q1 (t) ,p 1 (t) ,q 2 (t) ,p 2(t)] (59)

The resulting system equations of motion are

aHPI = Pj+q2

, -6 = (l-fL) (q1-, ) _.(q 1 +1-1 )
S =1(60)

42 -37p- P2-q

_ aH _ _P_ (-g) q2 _q 212 13 3,r-2ri r2

3.5.1 Periodic Orbits and the Equations of Variation

The definition for a periodic orbit is simply stated as

the state vector at time T is equal to the state vector at

the initial time, or

X(o) = X(T) (61)
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1 a

M2enter of Mass

Figure 1: Reference Frame for the Restricted
Three-Body System (Ross, 1991:6)
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Using the periodicity of a system, a solution for the

initial condition can be found by "iteratively narrowing the

difference between the initial and final conditions" (Ross,

1991:9). In order to make the appropriate adjustments to

each iteration, the behavior of nearly periodic orbits must

be known. The equations of variation describe the motion of

these nearby trajectories. As defined by Eqs(4), (5), and

(6), the equations of variation for the three-body problem

are given as

[0 1 10

6161 -H11 0 -H13 1] 8(62

-2 j -- A ( t ) ( 620

where

-3(qJ-I) 2 (1J_1) 3 (ql+l-g)2 1+ 1-g+ ,5 5 1 3rl r2 rI r2
-3 (q1 -g) q 2 (1-9) 3 (q 1 +l-p) q2g

H13 (63).rl r2

H31 =H 13- 3c22 (1-g&) 3q2,2 1- ,+.._
H3 3 5 5 3 3

r, r2 ri r 2

These variational equations of motion form a set of time-

varying, linear, differential equations which then follow

Eqs(7) and (8) in forming a fundamental set of solutions, D.

Equations (60) and (62) can be numerically integrated to

form a solution to Eq(7) in the form of
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q1) $1 12 $13 $14 ]Jq (0)]
6P,() $ 21 $22 $23 $24 5p 1 (0) (64)
6% ($ 3 C2 +3 03 6q$ (6)

15.) 2 [r 41 $2 $3 +4JL8P 2 (o) J

3.5.2 Determination of Initial Conditions

In finding a periodic orbit, any set of initial

conditions can be inserted into Eq(59) and integrated for a

desired T. The error in the final state vector is the left

hand side of Eq(64) and after inverting the integrated 0,

the error in the initial state vector is found.

Since the Hamiltonian state variables are

interdependent, this method of iteration is overly

cumbersome in solving for the initial conditions. The state

variables, Eq(59), can be shown to be functions of H, L,

qj, and q2 only (Ross, 1991:17-18). It makes sense to

maintain the conserved quantity, H, constant since it will

allow for better comparisons in the perturbation study. The

quantity g is system dependent and therefore constant. This

leaves us with only the coordinates q, and q2 to manipulate.

After some examination it is noted that selection of q2=0

also yields pl=O, or in other words, the orbit starting

point will be on the q, axis in a motion perpendicular to

the q, axis. The result of this selection for initial

conditions is that Eq(64) can be reduced to
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P 1 CO 21 0 24 ] 6io 0) (65)
[q 2 (t) J 31 0 34  [8P2 (0)

(Ross, 1991:13).

But since the selection of P 2 is not arbitrary, another

revision, as outlined in discussions with Dr. Wiesel,

replaces P2 with another selectable initial condition, the

integration time. This selection then yields another

quantity, the period, that will be as important as the

initial coordinates and momenta. Equation (65) can now be

modified to

[ap,(t) ap(

15P1(I CO aq- () - q, (O) 1(66)

where

ap( ap ) apt('r) 4ap2 (0) 021+0246

aqp (0) pq ( 0) dIrect÷+ aP2 ( 0) I aql (0) 10 T2

(67)
aP1 (t)

and likewise
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(68)
aq 2 (t2

The non-direct term in the first equations of Eq(68) and

(69) are due to the coupling effect of q, and p2 . Through

inversion of Eq(67) the required changes in q, and the

period can now be found.

3.5.3 Surface of Section

Finding an initial guess for q, and T is made easier

through the use of surface of section plots. These plots

define regions of periodic motion by plotting only the

apogee and perigee points along a periodic trajectory. A

collection of these plots was compiled into Jefferys' An

Atlas of Surface of Section for the Restricted Problem of

Three Bodies. As an example of a surface of section plot,

Figure 2 shows a precessing elliptical trajectory. Given

enough time, a plot of only the perigee and apogee points

for an infinite set of ellipses will form a set of rings as

seen in figure 3. Not all periodic regions will form a pair

of rings, but it is the easiest form to understand. To

examine other periodic regions the reader is directed to

Jefferys (1971). These regions can then be searched for

specific periodic trajectories.

Since the development of the equations of motion in
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Jefferys differed from that of Ross (as adapted from

Szebehely), Ross describes the transformation between the

two derivations (Ross, 1991:14-17). The purpose of this

transformation was so that the initial conditions used to

create Jefferys atlas could be used as input for Szebehely's

equations of motion. The resulting surface of sections

could be directly compared to the atlas developed by

Jefferys.

For the Sun-Jupiter system, g=0.00095388. With the

selection of 3.15 for the Jacobian constant, J, the

resulting surface of section can be seen in figure 4. The

relationship between the Jacobian constant and the system

Hamiltonian is

H = 1 [I(i-I) -J] (69)

(Ross, 1991:16)

3.6 Perturbation Theory on the Restricted Three-Body

Problem

With the assistance of the surface of section plot and

the iterative integration of the equations of motion, a

periodic trajectory is found. The next step is to find out

what effect perturbations to the initial conditions have on

the stability of the orbit.

In examination of the effect of perturbations to the

initial conditions, two different representations of the
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Figure 2: An Elliptical Trajectory Precessing

About Primary 1-4 (Ross, 1991:19)
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Figure 3: The Surface of Section of the

Elliptical Trajectory (Ross, 1991:20)
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nearly periodic orbit will be constructed. Both

representations will use the (D found from the integration of

the periodic initial conditions for one period. The 4)

matrix will be transformed into a real valued, symplectic

eigenvector matrix, E, and a Jordan normal-like matrix, J,

of Poincar6 exponents.

3.6.1 The Exact Representation

In the first representation, the periodic I and E will

be integrated over one period and an evenly spaced sampling

of these quantities will be converted into a set of one

hundred Fourier coefficients. A nearly periodic trajectory,

close to the original trajectory, will then be integrated

over time. The integration time required for the nearly

periodic trajectory will be many times the orbital period of

the system and is on the order of the period of an

oscillatory Poincard exponent. Subtracting the periodic

trajectory from the nearly periodic defines an A(t) (as

described in Eq(6)), and using the canonical Floquet

transformation,

(t) = E-1 (t)N(t) (70)

creates a set of modal variables over the integration time.

This set of modal variables can then be plotted as an exact

representation of the nearly periodic orbit (Ross, 1991:24).

3.6.2 The Expanded Representation

For the second representation, the original Hamiltonian
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is canonically transformed into the modal variables and

expanded in a Taylor series which produces

S V) 14 a2H(y) I (71)

1.I 7 -0 J-i 1-i

where g=O centers the expansion on the periodic trajectory.

In tensor notation Eq(71) becomes

(72)
1 1

K(7) = H(U) +H.1 ()y 1 +-,-+ H11 (U) ylyJ+---.H1Jk (O) yyjyJ+ .....

The first term in the expansion is the Hamiltonian
for a periodic orbit, and is a constant. The second,
or linear term is identically zero, because it
describes the motion of the periodic trajectory with
respect to itself. The third, or quadratic term is the
Floquet problem, and becomes a constant coefficient,
linear system in the new variables. Since the
magnitude of the modal state vector is small compared
to one, the expansion is truncated after the fourth
term. (Ross, 1991:31-32)

The new modal Hamiltonian then becomes

K(7) = H(U) +.yTSY-+ 1 1k (U) YIYJYk (73)

where the ith portion of the quadratic term will follow one

of the forms outlined in Appendix A.

The third order tensor can be expanded to the very

cumbersome form of
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i~ HIgyIy1 yk = cly1 + C2YlY 2 + C3yy 3 + C4y y2 4 + csy2y7

+ cbYlY2 Y3 + C7YlY 2Y 4 + cBYVy7 + CIyýy3Y4 + CI.Y1Y4
c1  C12 3y + c32y4 + c 2Yy

+ C 3y+ Cy2 3  + 1 y y3 y
2+y83 2y2 + C2.y C

+ 16yV2y 4 C17y + C1 O~4 L 19Y3/'j4  2

where the coefficients c, are defined by the triple

summation i=l to 4, j=l to 4, and k=l to 4 over the right

hand sides of
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c, (t) = THIjkP1IPJ1PkI

C2 (t) = HlJk [PuP j1Pk24 Pu1Pg2P*lPI P~~Ii

C3 (t) = TH~j [PIIPiIPk3+PIlP13PXI+PI3 PI1Pkl]

C4 (t) = ..THilk [PI1PjIPk4+PIPj4Pk1+P14PJ1Pk1]

c5 Mt = T [jkIPIlP_12Pk2+Pi2P~lPk2 +PI2Pj2PkI]

C6 (t) = 6HlIk PIlPJ1_2Pk3+PllPj3Pk2+Pi2P 2 IPk3

+Pl2Pj3Pkl+Pl3PJIPk2+Pl3P)2Pkl)

C7 (t) = H [Ilk P112Pk4+P1zPj4Pk2+PI2PJ1Pk4
+p1pp 4Pk1P 4 Pj 1 Pk2+PI4Pj2 Pk1]

Ce (t) = ~HljkIPIIPJ3Pk3+PI3PIPk3+Pl3P,3Pkl]

c9 (t) = T.HIjk [PIP33Pk4+P11PI4Pk3+PI3Pj1Pk4

+P13Pj4Pkl +Pl4PJlPk3+Pl4Pj3Pkll

CIO (t) = -~Hilk [P11P1 4Pk 4 +PI4PJlPk4 +P14Pj 4Pk1] 75

C12 (t) = ..THIjk[1PI2P,2Pk3+P12PI3Pk2+Pi3PI2Pk2]

C13 (t) = 6HIlk [P12Pj2Pk4+P12PI4Pk2+P14Pj2Pk2]

c14 (t) = THIjk 1P12Pj3Pk3+P13Pj2 Pk 3 +P13 Pj3Pk2]

C15 (t) = THIjk [P12P,3Pk4+PI2PI4Pk3+Pi3PJ2Pk4

+Pi3Pj4Pk2+PI4Pg2Pks+PI4P,3Pk2]

cj" (t) = 6HIjk[(P12Pj4Pk4+P14PI2Pk4+Pi4P24Pk2I

c17, (t) = 6HIjkPl3Pj3Pk3

c18 (t) = THIjk [PI3P2 3Pk 4 +P13P3 4Pk 3 +PI4P3 3Pk 3]

c19 (t) = THIjk [PI3Pj4Pk4 +PI 4Pj3Pk4 +Pi 4 Pj4Pk3J

C20 (t) = THIjkPI4PI4Pk 4

Here, the variable pn is the element in the mth row and the

nth column of the transformation matrix, Z. The periodic
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and E will again be integrated over one period, but for this

representation, at each of the evenly spaced samplings, the

expanded modal coefficients, c,, will be calculated. Like

the sampled sets in the exact representation, each of the

sampled sets of c, will be converted into a set of one

hundred Fourier coefficients.

Starting with the initial modal variables, found in the

exact solution at t=O, the expanded Hamiltonian is

integrated over the same time as the exact solution. The

results can be plotted as the expanded solution and can be

compared to the exact solution. The modal equations of

motion come from the expanded Hamiltonian and are

S _ a(K2) +c2 y +2c S2yIy 2+c 6yy 3+C7 yly 4  (76)
-Y dY2 276)

+3cy2y22 C12y2y 3+ 2c 1 3y 2y 4+c14y32 +c15y 3y 4+c1 6y4

-K a (K2) _3c~y•_2c 2y~y2 _2c 3yly3 _2c 4y~y4

cy- 2 -3 y - 2•- y2 -2 - -2 o Y(

cSY2 -C6yV2y3  C-7-y2Y4 -CSY 3 -C9Y3Y4 -C1 0jt4

~aK a(K2) 2,rV4 +c4 y1 +c(y8y2+c)yly3 +2C1 oyly4

+C1 y 2,cl5 y 2y 3 +2 1 yy+c 1 ,y3-s-2c19y~y4 +3C20 y423Y238 C16Y2Y4
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aK _ (K2) -2_JV4 = -- • -c3y1 -cYyY2 - 2 csy,-y3 - cgy,.y, 7
2 2

cy 2y-2C1 4Y2Y•3-c 15 y2Y4-3 cAy2 -2CI 8Y3Y4 -C 9Y

where the term a(K2)/ay, depends on the form of S in the

quadratic term of the modal Hamiltonian. Appendix A also

defines the forms of a(K2)/lay for the various types of

eigenvector pairs.
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IV. Software

The software programs used in this study are coded in

Fortran 77. All seven main programs and eleven subroutines

can be found in Appendix B. The majority of the programs

were written with the restricted three-body problem in mind,

but any of the software can easily be modified to any

periodic Hamiltonian system.

4.1 Surface of Section

The first program used in the study is the program

SECTION. The core of the program was written by Ross (1991)

with the purpose of duplicating the surface of section plots

created by Jefferys (1971). The program is written to

integrate several initial conditions, while storing the

apoapsis and periapsis crossings in a plot file. While the

program is simple in its concept, finding initial conditions

that produce periodic regions in the phase space is

guesswork at best. Validation of this program is

accomplished through direct comparison with the atlas of

surface of sections created by Jefferys.

4.2 Determination of Periodic Initial Conditions

Once the surface of section plot has been created,

determination of exact initial conditions for a periodic

trajectory must be found. The reader should recall that

this was done by selecting an initial condition where the
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trajectory was crossing the q, axis at the initial time.

Therefore the initial condition on q2 is zero; the guessed

initial condition on q, is found by estimating the center of

a periodic region on the q, axis. The third initial

condition, the period, is estimated by examining the time it

takes for a nearby orbit to nearly return to its initial

location. These estimated initial conditions are loaded

into the program PERIOD which iteratively integrates and

corrects q, and T until at the end of one period, the

trajectory has returned to the initial q, and q 2 position.

A benefit of this program is that it is self checking, it

accomplishes this by forcing the final conditions and

initial conditions to match. Verification of the coded

equations of motion is the only check needed for this

program, and this is best done by hand.

Once the initial conditions are found, the program

extracts the eigenvalues, eigenvectors, and Poincard

exponents of the system.

4.3 Symplectic Normalization

The type of symplectic normalization required is

determined by examination of the types of eigenvector and

Poincar6 exponent pairs found in program PERIOD. Some

rearrangement of the eigenvectors and eigenvalues may be

required in order to ensure positive/negative or degenerate

pairs are kept together. Once properly arranged, the

eigenvectors are fed into program EXSYRL (EXTENDED,
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SYMPLECTIC, REAL). The purpose of this program is to find

an extended eigenvector if needed, convert the standard

eigenvectors into symplectic eigenvectors, and ensure that

the symplectic eigenvectors and the J matrix are real

valued. The best check of this program is to ensure the

final forms of E and J satisfy Eq(1l) at several different

times over the period of motion.

4.4 Storage of the Periodic Trajectory and Hamiltonian

Coefficients

The final E and J matrices are loaded into programs

FLOQUET and HAMILTONIAN to create the sets of Fourier

coefficients for either the exact or the expanded

perturbation problems.

FLOQUET integrates the periodic orbit and extracts two

hundred evenly spaced values of the state vector and the

symplectic eigenvector matrix. These sets are then fed to

subroutine FOURIER which converts them into one hundred

pairs of Fourier coefficients allowing the periodic

trajectory to be reformed at any time.

HAMILTONIAN also integrates the periodic trajectory and

extracts the state vector and the E(t) matrix values at two

hundred evenly spaced points on the trajectory. It then

performs a Taylor's series expansion of the Hamiltonian to

find the twenty Hamiltonian coefficients, c1 (t), at each of

the two hundred points. These sets of c1 (t) are also loaded

into FOURIER to be converted into one hundred pairs of
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Fourier coefficients for each set of c1 (t)

One check for these two programs is to ensure that the

state vector and E have returned to their initial condition

after one period. This should not be a problem since this

same check is performed in PERIOD. A valuable check of the

Fourier coefficients is performed by summing the Fourier

cosines. Each cosine sum should equal the initial condition

of the function the Fourier coefficients describe (Brower

and Clemence, 1961:110).

4.5 The Perturbation Solutions

The exact and the expanded perturbation problems are

analyzed by programs of the same names. Program EXACT takes

the Fourier coefficients created in FLOQUET and reassembles

the periodic trajectory conditions on demand. Perturbed

initial conditions are integrated in time, and at regular

intervals the state vector is extracted. The periodic state

is subtracted from the perturbed state and the result is

converted into the modal variables by the corresponding

E(t).

Program EXPANDED requires not only the Fourier

coefficients created in program HAMILTONIAN, but also the

initial modal conditions as found by program EXACT.

EXPANDED then integrates the modal variables directly. Both

programs extract the modal variables at regular intervals

and send the results to plot files. If the two programs are

working correctly, there should be a certain amount of
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correspondence of the plots for the two solutions. The

actual amount of correlation is a topic for the next

chapter.
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V. Results and Discussions

5.1 Canonical Floquet Theory

The most significant result of the canonical Floquet

theory is that it works. The application of canonical

Floquet theory is currently limited to Hamiltonian systems.

There appears to be no limits to the degrees of freedom that

can involved as long as the system can be written as a

periodic Hamiltonian. This now opens the doors to a great

number of possibilities for perturbation solutions to

periodic systems. Thus, the results of the three-body

perturbation solution will be of more interest than any

further discussion of the theory.

5.2 The Three-Body Perturbation Problem

Recall, the particular three-body system of interest in

this study is the Sun-Jupiter system; this means a

S= 0.00095388. The surface of section for this system was

presented in Figure 4. The first task was to find a

periodic region in this phase space. The surface of section

was created using a Jacobian constant of J = 3.15 and a

dozen initial state conditions along the x axis. In

examining the x axis between the two primary masses (i.e.

between -1 and 0), there appears to be two main periodic

regions; one centered at approximately x = -0.3 and the

other at approximately x = -0.5 on the surface of section.
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The five crescent shaped structures in between the first and

second central rings define the periodic region associated

with x = -0.3, while there are four outer crescents that

define the periodic region associated with x = -0.5. Figure

5 shows a close-up view of the x = -0.5 region and provides

an initial guess of x = -0.51 for the periodic initial

condition, the center of the crescent structure. After

iteration of the guessed initial conditions with program

PERIOD, the actual initial conditions are determined to be

x = -0.5136620321, y = 0.0, and a period of 6.256580411 (all

rounded to ten significant figures) for the given Jacobian

and g. Converting these conditions into the initial

conditions for Szebehely's equations yields

q, = -0.5127081521, q 2 = 0.0, and H = -1.574523515, with the

same period of motion. This particular periodic trajectory

produced a positive/negative imaginary pair of Poincar6

exponents as well as a degenerate pair, making it a good

test case for the canonical Floquet theory as well as the

perturbation analysis.

5.2.1 Unperturbed System

The starting point for analysis in the study was to

examine the time history of the modal vectors for the

unperturbed case. Since an imaginary pair of o, produces a

sine and a cosine function in the modal variables, a plot of

one versus the other should produce a circle. For the

unperturbed case, the modal vectors should equal zero for
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all time. Figure 6 shows the first and second modal vectors

plotted against each other. The other two modal vectors are

simply plotted against time in Figures 7 and 8. In all

three figures, the scale is such that maximum deviation will

be seen, but in all cases the magnitude of the deviation is

zero for purposes of this analysis. Looking at the

deviations in this detail do show trends in the data that

can be compared to data in the perturbation cases. The fact

that any error shows at all is almost certainly due to

truncation error in all the calculations made on this data.

5.2.2 Perturbed Systems

For this study only two initial values were perturbed

for examination, first q, and then J; J can be translated

into a change in H. Each quantity affected the value of P2

through the equations of motion, but no other initial

conditions are changed. Physically, a change in q,, and P2,

means a change in position on the x axis of the system in

Figure 1 along with a change in the y velocity, P 2, in order

to stay on the same Hamiltonian surface, H. The change in

the Hamiltonian value allows for the position to remain the

same, but a change in the y velocity is still required.

5.2.2.1 Changes in q,

As in any perturbation problem, the magnitude of the

change must be small in order to keep the truncated,

expanded Hamiltonian valid. Since the distance between the

two primary masses has been non-dimensionalized to a value
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of one, it would be accurate to say that a perturbation of

0.001 for the third body in the system, or a tenth of a

percent, is significant. In physical dimensions this would

be an approximate position change of 775,000 km, or more

than twice the distance to the moon from earth. The initial

change to the position was chosen to be 6q, = le-8, or about

7.75 km. It can be seen in Figure 9 that the perturbed

solution of the oscillatory modal variables describes a

visually perfect circle. Some particular items of interest:

1) the circle does close on itself as can be seen by an

overlapping region near the left side of the plot, 2) both

the exact and the expanded solution match precisely for this

initial displacement, 3) the amplitude of the y, and Y2

modal variables is about three times the initial position

displacement, and 4) a time history of the first two modal

variables, Figures 10 and 11, shows that these two variables

do in fact describe smooth sine and cosine functions at this

level of displacement. The time history for the perturbation

in modals Y3 and Y4 is not presented at this point because

the magnitudes of the perturbations is still nearly zero.

The exact and expanded solutions of Y3 and Y4 match

perfectly at 8q, = le-8.

The magnitude of the perturbation is then increased to

6q, = le-6, or about 775 km (the distance from San Diego to

San Francisco). Although this is an enormous distance for

an Earth satellite to be out of orbit, is it a significant
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perturbation for a periodic trajectory in the Sun-Jupiter

system? Figure 12 shows that although there is a slight

waver in the circular path of the first two modals, it is

still very close to cyclic behavior. The time histories of

the first two modals show no difference to the sine and

cosine functions of Figures 10 and 11. Note also that the

amplitude of these modals is still approximately three times

that of the initial displacements and the exact and expanded

solutions still follow each other perfectly. At this point,

the magnitude of the third and fourth modals (Figures 13 and

14) are becoming more significant, but they are still at

leasL one hundred times smaller than the first two modals.

It is interesting to note how closely the exact and expanded

solutions match in all modals at this point.

Increasing the initial displacement even further, to

6q, = 5e-5, or about 39,000 km (three times the diameter of

the earth), a drastic change is found in not only the modal

response, but also the correlation of the exact and expanded

solutions. As can be seen in Figure 15, although the exact

solution does close on itself, it follows a very erratic

path that quickly loses its circular appearance. The

jagged, sharp changes in many of the figures at this point

are partially do to the large steps between points in the

plot, but most of the problem is occurring because the

periodic trajectory is dissolving. This can be seen in

Figure 16 where the plot of the oscillatory modals in the

56



J = 3.15 J= 0.0 Exact
= 0.00095388 6q= 1.Oe-6 x x x Expanded

I I' ' I I ' ' I I '

2x10-6

S0

-2xlO-6

, I , I I I
-2×x10- 6  0 2x10-6

modal y,

Figure 12: Oscillatory Modal Variables,
y1 versus y2, q = le-6

57



J = 3.15 =i 0.0 Exact
Jt= 0.00095388 6q, 1. l.e-6 x x x Expanded

0 X> X X x

-2xl10 9

-3x iO-

0 50 100 150 200 250

Time

Figure 13: Time History of Modal
Variable Y3 1 bq, = le-6

58



J=3. 15 =i 0. 0 Exact
=0.00095388 8q 1.0Oe-6 x x x Expanded

I I I I I I I II I I

XX

X

XX

4x 108  
X

X

X

XX

X X

X~X X

2x10 8  
XX x X

X X XX

X X

~ X X

0

-2x 108"

-4x 10-8

-6x1O8 1 I I I

0 50 100 150 200 250
Time

Figure 14: Time History of Modal
Variable Y41 6q, = le-6

59



J = 3.15 6cr 0.0 Exact
1±= 0.00095388 6q, 5. Oe-5 x x x Expanded

II I I I Ix I I X 1 1 1 1 -

-X 0

-0.0001 x

-000 0 0.00 .00
Xmodal Y

-060



J = 3.15 bJ = 0.0 Expanded
S= 0.00095388 6q, 5.Oe-5

0.0001

Co2

0 0
0

-0.0001

-0.0001 0 0.0001 0.0002
modal yj

Figure 16: Oscillatory Modal Variables,
Yi versus Y2 , Expanded Solution, 6q, = 5e-5

61



expanded solution is shown alone. The integration time is

no longer enough to allow these modal variables to close on

themselves. The time histories of the four modal variables

for both the exact and the expanded solutions are shown in

Figures 17 to 21. In every case, the expanded solution

appears to be lagging the exact solution. A larger

deviation in form also starts showing up in modals y3 and Y4

of Figures 20 and 21. It appears obvious that even at this

point, the expanded solution is no longer accurate. The

periodic nature of the trajectory does seem to hold for the

exact solution, but with such erratic behavior over part of

the time history it is doubtful that the third-body in this

system could maintain its trajectory for long.

Finally, as the change to q, continues to increase, the

expanded solution loses all its coherence first, as can be

seen in Figure 22, while the exact solution becomes entirely

distorted by 8q, = le-3 in Figure 23. Looking more closely

at the first two modal variables when 6q, = le-3 (twice the

distance to the moon), it can be seen that the y, modal has

completely lost the cosine shape and looks a great deal like

the Y3 modal inverted. The Y2 modal has lost the smooth

sine shape and appears to be approaching the same shape as

the Y4 modal (see Figures 24 and 25). The shape of the y3

and Y4 modals has not changed since the initial

perturbation, while the magnitude has increased with the

perturbations. Meanwhile, the expanded solution for the Y3
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and Y4 modals has begun to lose coherence and the value of

these modals is above the double precision ability of thp

computer in both cases. In either solution, the system is

no longer periodic.

5.2.2.2 Changes in J

As with the 6q, cases, the bJ cases will start with

bJ = le-8. The change in J, or H, is not as easy to

conceptualize as the change in q,, but the results are just

as interesting. Figure 26 shows that the y, and Y2 modals

again form a visually perfect circle at the initial change

in the Jacobian/Hamiltonian and again, the exact and

expanded solution match perfectly. The first two modals

still describe their sine and cosine waves and are at this

point still smooth in structure. Meanwhile, the modals Y3

and y4 are still too small to draw any significant

conclusions. As the change in the Jacobian value is

increased to 6J = le-6, a similar distortion to the circular

plot of y, and Y2 begins to appear. This distortion can be

seen in Figure 27 for the two modals plotted versus each

other and in Figures 28 and 29 for the time history of the

modals. Modals y3 and y, are also shown in Figures 30 and

31 for the same change in the Jacobian. At this point,

there are two notable differences in the modals with a

change in the Jacobian as compared to those with a change in

q1. First, modals y, and y3 tend to be more erratic in the

earlier part of their time history. It is surmised that
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this increased erratic behavior at the beginning is damped

out later due to the influence of the primary masses. The

result is a change in the trajectory from a less stable to a

more stable state for the new value of the

Jacobian/Hamiltonian. Secondly, the Y4 modal continually

increases in magnitude throughout the integration period; in

fact, it is exactly a linear increase to the modal value.

The most likely cause of this is that this modal condition

is associated with the time along the trajectory, and the

change in the Hamiltonian value causes a constant drift in

the time location.

The change in the Jacobian is then increased to

bJ = le-5 and bJ = 5e-5, and several new deviations are

observed. In Figures 32 and 33, the modals yi versus Y2,

are notably not converging on each other at the initial

condition (located at nine o'clock on the plot), unlike the

case in all the y, versus Y2 plots for the 6q, cases. Yet,

like the 6q, cases, there are still two "calm" regions in

the path of the modal circles. The first occurs just above

the three o'clock point on the path and the second occurs at

about ten o'clock. In comparison, looking at Figures 15 and

22, even in the highly perturbed cases these regions appear

at exactly three and nine o'clock. A similar pattern is

seen when comparing the y, ic-)dal time histories in Figures

34 and 35 to those of Figures 17 and 24. This would also

support the idea that there is a drift along the time domain
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of the system and that it is affecting all the modal

variables. Also note, that through 6J = le-5, the expanded

solution has closely followed the exact solution. But, at

bJ = 5e-5, the expanded solution again falls off.

Finally, the change in the Jacobian/Hamiltonian is

increased to 6J = le-3, where the same trends noted before

are amplified in magnitude. A close look at Figures 36

through 40 shows that the second erratic region for each

modal variable is shorter and smaller in magnitude than the

first, and it appears that a third region is starting. If

these regions continue to get shorter and smaller, it would

support the theory that the perturbed trajectory is settling

into a new trajectory that may be more stable than the

original.

5.3 Summary

In the end analysis, it appears that the exact solution

tracks the modal variables slightly better at larger

perturbations than the expanded solution. Since the

correlation of the two solutions is so accurate at small

perturbations, this suggests that the biggest fault in the

expanded solution is the truncation of the Hamiltonian after

the cubic term. The nearly perfect comparison of the two

solutions also lends credibility to both methods used in

this study for the perturbation problem. Because the

perturbation problem was secondary to this study, the

interpretation of the perturbed solutions presented may not
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be the only explanation and the reader is encouraged to make

their own examination of this and other periodic solutions

using the canonical Floquet theory.
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VI. Conclusions and Recommendations

The major conclusion of this study is that Floquet

theory can be used for canonical transformations to

real-valued modal variables for use in perturbation research

on periodic systems. Any transformation, T, to the

eigenvectors or exponents of the Floquet solution must obey

the relation TTZT = Z in order for the transformation to be

a canonical one. Special considerations must be made for

each Poincard exponent pair type, with extra emphasis on the

degenerate case of zero Poincard exponents.

In support of the major finding, the restricted three-

body solution was analyzed with both an exact and an

expanded solution in the modal variables. The results

showed that the exact and expanded solutions agreed

extremely well for very small perturbation. At larger

perturbations, as expected, the expanded solution was no

longer accurate due to the truncation of the expansion after

the cubic term. The exact solution, while remaining

graphically periodic at higher perturbations, also exhibited

irregular displacements at these higher perturbations and

would likely result in complete lose of the periodic

reference trajectory over time.

The recommended follow-on to this work would involve a

much more detailed analysis of the three-body problem to

include expanding the analysis to a three-dimensional
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problem. Mass systems other than the Sun-Jupiter system

would create more interesting surface of section plots and

would doubtlessly result in much more interesting modal

analyses. There is also the need for using canonical

Floquet theory on other periodic systems, not only to

further validate this approach to canonical transformations,

but to assess the full usefulness of this approach in

perturbation problems. Another system that would be of

particular interest, because of its requirement for precise

operation, would be that of rotating blades on helicopters

and jet engines.
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Appendix A: Six Modal Equations of Variation Types

All six cases for the modal equations of variation are

listed in the following pages. Note that the A/Dy, is

equivalent to a(K2)/ay, term for the expansion of the

variational modal Hamiltonian.
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Case 1: Poincard exponents are a positive/negative pair

of reals, and the symplectic eigenvectors are real. The

initial and final forms of J are

(A-1)

the resulting S is then

and the modal Hamiltonian 9t is

9t- -Y'sy = 1 (y 1 y2O)+y1y 2O) = y1 y 2( (A-3)

Finally, the equations of variation are

S,1= 7-= Y0
aIY2 (A-4)
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Case 2: Poincard exponents are a positive/negative pair

of reals, and the symplectic eigenvectors are imaginary.

The forms of J are

(A-5)

and the resulting S'" is

s [O(A-6)

and the modal Hamiltonian 9t is

9 = _l-- = 1 (-Yy 20_-YIy 2C) = -y 1y 2CO (A-7)

Finally, the equations of variation are

S 
(A-8)

yý2 =YA
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Case 3: Poincar6 exponents are a positive/negative pair

of imaginaries, and the symplectic eigenvectors are real.

The forms of J .re

J = -o _t J A9

and the resulting S' is

S' LZ ' (A-i10)

and the modal Hamiltonian 9t is

1 -- -- 2

_ Y = -7o)(yi2+y2) (A-II)

Finally, the equations of variation are

M- =y - Y2
a82 (A-12)

-(y = Y 1
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Case 4: Poincar6 exponents are a positive/negative pair

of imaginaries, and the symplectic eigenvectors are

imaginary. The forms of J are

j 0 = ] _ [ '] =A-13)

and the resulting S'' is

S/1 = = T ' 0 (A-14)

and the modal Hamiltonian 9t is

75 7= (y,+y1) (A-15)

Finally, the equations of variation are

1'2C S (A-16)
Yý2 = -a- = -Y_ l•I
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Case 5: Poincard exponents are a pair of zeros, the

degenerate case, and the symplectic eigenvectors are real.

The initial and final form of J are

(A-17)J= 0

and the resulting S is

-~= [o 0] C-e

and the modal Hamiltonian 9t is

9t = -- -11 2
- y y= 12 (A-19)

Finally, the equations of variation are

- 0 (A-20)
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Case 6: Poincard exponents are a pair of zeros, the

degenerate case, and the symplectic eigenvectors are

imaginary. The forms of J are

(A-21)j = 0o' / =[00

and the resulting S'' is

S/= [-i /] (A-22)

and the modal Hamiltonian 9t is

Y = =- (A-23)

Finally, the equations of variation are

y 1  = 0
_T (A-24)
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Appendix B: Fortran Code

C
program section

C
c **************** "SURFACE OF SECTION" **********************
c - creates surface of section plot for the restricted
c three body perturbation problem
c

implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)

c
c ****************** PROGRAM COMMONS *
c

common /data/ xmu,xmua
common /ham/ t,x(20,4),f(20,4),err(20),hh,nn,mode

c
dimension rdotv(4),x(20,4),f(20,4),err(20)

c
character*l0 filenamel, filename2, filename3

c
c * READ INPUT DATA *************************
c

read(*,*) nic
c
c nic = number of initial conditions
c

read(*,*) xmu
xmua = l.d0 - xmu
read(*,*) hh,tmax
npts = dint (tmax/hh)
read(*,*) xjac,syn

c
c **************** OPEN OUTPUT FILES *
c - file 1 is general output
c - file 2 is input for program period
c - file 3 is the surface of section plotfile
c

read(*,*) filenamel
open(1,FILE=filenamelSTATUS='UNKNOWN')
read(*,*) filename2
open (2,FILE=filename2, STATUS='UNKNOWN')
read(*,*) filename3
open(3,FILE=filename3, STATUS='UNKNOWN')

c
c ********* REPEAT INPUT VALUES TO DATA FILE *
c

write (l,*) 'mu=',xmu,' 1-mu=',xmua
write (l,*) 'step='rhh,' maximum time=',tmax
write (1,*) 'number of points=',npts
write (1,*) 'Jacobian constant=',xjac

c
do 600 J = l,nic

k=0
read(*,*) xnot,ynot
write (1,*)
write (1,*) 'x0=',xnot,' yO=',ynot

c
mode = 0
nn = 4
nxt = 0
t = 0.d0

c
C

c GET ql,pl,q2,p2,AND HAMILTONIAN; FOR GIVEN x0,yO, AND JACOBIAN
c
c

q1 = xnot+xmu
q2 = ynot
xham = (xmu*xmua-xjac)/2.dO
rl = dsqrt((ql-xmu)*(ql-xmu) + q2*q2)
r2 = dsqrt((ql+xmua)*(ql+xmua) + q2*q2)

100



d = xham + xmua/rl + xmu/r2
g = q2/(ql-xmu)
a = 0.5d0*(g*g + 1.d0)
b = -(g*g*xmu + g*q2 + ql)
c = 0.5d0*g*g*xmu*xmu + g*q2*xmu - d
disc = b*b - 4.d0*a*c
if( disc .lt. 0.dO) then

write (l,*) 'stop 10 - no roots'
go to 600

endif
p2 = (-b+syn*dsqrt(disc))/(2.d0*a)
pl = g*(xmu-p2)

c
c * INITIAL CONDITIONS *
c

x(l,l) = q1
x(2,1) = pl
x(3,1) = q2
x(4,1) = p2

c
c * INITIALIZE HAMING *
c

call haming(nxt)
c
c *********** TURN OFF SECOND EOM EVALUATION *
c

nxt = -nxt
if(nxt .ne. 0) go to 499

write (l,*) 'stop 99 - unable to start Haming'
go to 600

499 continue
c
c ****************** INTEGRATION LOOP *******************
c

write (i,*)
write (1,*) "npts value at n*period'
do 500 i = l,npts

c
c ***************** CHECK FOR ESCAPE ******************
c

if(nxt .eq. 1) then
rl = dsqrt( (qlc - xmu)*(qlc - xmu) + q2c*q2c
if(rl .gt. 5.d0) then

write (l,*) 'stop 29 - escaped'
go to 600

endif
endif

c
c ***************** PERMUTE INDICES ********************
c

nm3 = nm2
nm2 = nml
nrml = nxt

c
c ******** INTEGRATE ORBIT, HAMING PERMUTES NXT *
c

call haming(nxt)
if(i .eq. 1) go to 500

c
c *************** CALCULATE R DOT V *******************
c

qld = f(l,nxt)
q2d = f(3,nxt)
rdotv(nxt) = (x(lnxt)-xmu)*qld + x(3,nxt)*q2d

c
c ******** CHECK FOR PERI/APOAPSE CROSSING *
c

if (rdotv(nxt)*rdotv(nml).gt.0.dO) go to 500
c
c ************ CROSSING HAS OCCURRED!!! ******************
c INTERPOLATE TO CROSSING TIME
c

k=k+l
frac = -rdotv(nxt)/( rdotv(nxt) - rdotv(nml)
qic = -frac*x(l,nml) + (1.dO + frac)*x(l,nxt)
q2c = -frac*x(3,nml) + (l.dO + frac)*x(3,nxt)
xcross = qlc-xmu
ycross = q2c
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write (3,5) xcross,ycross
write (1,2) i,x(l,nxt),xcross,ycross

500 continue
write(3,1) 0.0, 0.0

600 continue
write(2,3) xmu,npts
write(2,4) xjac,syn

1 format(lx,dl6.9,3x,dl6.9)
2 format(lx,16,3(2x,d24.17))
3 format(lx,d24.17,4x,i6)
4 format(lx,d24.17,4xfd24.17)
5 format(2x,2(2x,e23.16))

close (1)
close (2)
close (3)

stop
end

include 'rhsl. for'
include 'haming. for'
include 'h.for'
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c **** SAMPLE SECTION INPUT *
c number of initial conditions
c value of mu
c integration time step / total integration time
c Jacobian constant / sign for conversion to Szebehely's eom
c general output filename
c file for information to be passed to PERIOD
c surface of section plotfile
c Jefferys's x and y initial conditions(enough pairs to equal first number)
C
c

6
0.00095388d9
0.005dO 500.d0
3.15d0 -l.dO
sl0out
plOin
sloplot
-0.2d0 0.dO
-0.3d0 0.dO
-0.4d0 0.dO
-0.5d0 0.dO
-0.6d0 0.dO
-0.7d0 0.dO
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C

program period
c
c ********************'* "PERIOD" ************************************
c - finds symmetric periodic orbits for Restricted problem by
"c finding x and period at zero to force px and y zero at period
"c and while keeping the hamiltonian constant
c

implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)

c
c PROGRAM COMMONS ******************************

common /data/ xmu,xmua
common /ham/ tx(20,4),f(20,4),err(20),hh,nn,mode

c
dimension xreal(4),ximag(4),cerr(2,i),b(2,2)
dimension x(20,4),f(20,4),err(20),xww(2)
dimension phi(4,4),xxx(10),rval(2,4),rvec(2,16)

c
complex*16 val(4),vec(4,4),ww

c
equivalence (val,rval)
equivalence (vec, rvec)
equivalence (ww, xww)

c
character*10 filenamel, filename2

c
c *************************** READ INPUT DATA *
c

read(*,*) xmu,npts
xmua = l.d0 - xmu
read(*,*) xjac,syn
read(*,*) tol,maxit
read(*,*) xnot,period

c

c *************************** OPEN OUTPUT FILES *
c - file 1 is general output
c - file 2 is input to program exsyrl
c

read(*,*) filenamel
open(1,FILE=filenamel,STATUS='UNKNOWN')
read(*,*) filename2
open(2,FILE=filename2,STATUS='UNKNOWN')

c
c ******************* REPEAT INPUT VALUES TO DATA FILE *
c

write (i,*) "mu=',xmu,' 1-mu=',xmua
write (i,*) 'max iterations=',maxit,' tolerance=',tol
write (1,*) 'number of points=',npts
write (i,*) 'Jacobian constant=',xjac

c
write (1,*) 'xO=',xnot,' period=',period
ql = xnot+xmu
write (i,*) "ql=',ql
xham = (xmu*xmua-xjac)/2.d0
write (i,*) 'xham='txham

c
c * BEGIN ITERATION LOOP *
c

do 500 iter = l,maxit
c
c * SET UP INITIAL STATE *
c

pl = 0.OdO
q2 = 0.OdO
rl = dabs( q1 - xmu
r2 = dabs( ql + xmua
p2 = q1 + syn*dsqrt( ql*ql + 2.d0*( xmua/rl

I + xmu/r2 + xham ))
c
c ****** * * * INITIAL CONDITIONS *************************
c

x(l,l) = q1
x(2,1) = pl
x(3,1) = q2
x(4,1) = p2
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C
c ************************* CALCULATE TIMESTEP *
c

hh = period/(dble(npts))
C
c *************************** WRITE PROGRESS ****************************
C

write (1,*) 'iteration',iter
C
c * INITIALIZE PHI MATRIX *
c

do 40 i = 1,4
do 41 j = 1,4

ij = 4*i+j
x(ij,l) = O.dO

41 continue
x(5*i,l) = l.dO

40 continue
c
c * INITIALIZE INTEGRATION CONSTANTS *
C

mode = 1
nn = 20
nxt = 0
t = O.dO

c
c * INITIALIZE HAMING **
C

call haming(nxt)

if(nxt .ne. 0) go to 1000
write (1,*) 'failure to initialize - stop 99'
go to 20

1000 continue
c
c * INTEGRATION LOOP ***********************

c
do 1500 i = l,npts

call haming(nxt)
1500 continue

c
c ************************* EXTRACT ERROR VECTOR ************************
c

cerr(l,l) = -x(2,nxt)
cerr(2,1) = -x(3,nxt)

c write (j,*) 1 errors'
c write (1,7) cerr(l,l),cerr(2,1)
c
c ********************** CALCULATE CORRECTION MATRIX *
c

dp2dql = (p2- xmua*(ql-xmu)/(rl*rl*rl)
1 - xmu*(ql+xmua)/(r2*r2*r2)) / (p2-ql)

b(l,l) = x(6,nxt) + x(18,nxt)*dp2dql
b(l,2) = f(2,nxt)
b(2,1) = x(7,nxt) + x(19,nxt)*dp2dql
b(2,2) = f(3,nxt)

c
c ********************** CALCULATE STATE CORRECTIONS *
c

call leqt2f(b,1,2,2,cerr, idig, xxx, ier)
c
c * ADD IN CORRECTIONS *
c
c write (1,*) corrections'
c write (1,7) cerr(l,l),cerr(2,1)

q1 = q1 + cerr(l,l)
period = period + cerr(2,1)
write (1,*) ql=',ql
write (1,*) period=',period

c
c * CHECK FOR CONVERGENCE *
c

iend = 0
if(dabs(cerr(l,l)) .gt. tol) iend = I
if(dabs(cerr(2,1)) .gt. tol) iend = 1
if(iend .eq. 0) go to 2000

c
c* * MAXIMUM ITERATIONS EXCEEDED WITHOUT CONVERGENCE ************
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C
500 continue

write (l,*) 'Iteration Limit Exceeded - stop 15'
go to 20

C
c **** ** * *CONVERGED PROCESSING*********** *******

C
2000 continue

ri dabs( qi - xmu
r2 =dabs( q1 + xmua
p2 = q1 + syn*dsqrt( ql*ql + 2.dO*( xrnua/rl
1 + xmu/r2 + xharn ))
write(l,*) 'PROGRAM CONVERGED IN',iter,' ITERATIONS'
write(l,*) ql=',ql
write(1,*) 'p1=',pl

write(1,*) 'q2=',q2

write(1,*) 'p2=',p2

write(1,*) ' period=',period
pidot = -1.d0*(-1.d0*p2 + xmua*(q1l-xmu)/(rl*r1*r1)
1 + xmu*(ql+xmua)/(r2*r2*r2))
qidot = p1 + q2
p2dot = -l.d0*(pl + xmua*q2/(r1*rl*rl)
1 + xmu*q2/(r2*r2*r2))
q2dot = p2 - l
write(1,*) 'qldot=',qldot

write(l,*) 'pldot=',pldot

write(1,*) 'q2dot=',q2dot

write(1,*) 'p2dot=',p2dot

c
c *********EXTRACT PHI
c

write(1,*) 'phi'
do 59 i 5,20

write(1,*) x(i,nxt)
59 continue

do 60 i = 1,4
do 60 j = 1,4

phi(j,i) = x(4*i+j,nxt)
60 continue

write(1,*) 'PHI'
do 61 i = 1,4

write(l,4) phi(i,1),phi(i,2),phi(i,3),phi(i,4)
61 continue

c
c *** COMPUTE EIGEN VALUES AND VECTORS OF PHI********
c

call devcrg(4,phi,4,val,vec,4)
c
c COMPUTE POINCARE EXPONENTS
c

do 80 i = 1,4
ww = val(i)

c
c complex log of eigenvalue over period
c

xreal(i) = dlog(dsqrt(xww(1)*xww(1) + xww(2)*xww(2))) /period
ximag(i) = datan2( xww(2), xww(1)) /period

80 continue
write (l,*) 'EVALUEs'
do 100 i = 1,4

write(1,5) i,rval(l,i),rval(2,i)
100 continue

write(l,*) 'POINCARE EXPONENTS'
write(l,*) I xreal(i)',' ximag(i)'
do 120 i = 1,4

write(1,5) i,xreal(i),ximag(i)
120 continue

write (1,*) 'EVECTORS'
do 140 i = 1,16

if( (i-1)/4 -eq. (i+2)14) then
write(1,5) (i+3) /4 ,rvec(l,i) ,rvec(2,i)

else
write(1,6) rvec(l,i),rvec(2,i)

endif
140 continue

C
c OUTPUT DATA FOR NEXT PROGRAM

write(2,8) xmu,xjac
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write (2, 3) period, npts
write(2,2) ql,pl,q2,p2
write (2,2) qldot, pidot, q2dot, p2dot
do 160 i = 1,4

write(2,2) phi(i,l),phi(i,2),phi(i,3),phi(i,4)
160 continue

do 180 i = 1,4
write(2,6) rval(l,i),rval(2,i)

180 continue
do 220 i = 1,16

write(2,6) rvec(1,i),rvec(2,i)
220 continue

2 format(1xf4(d24.17,2x))
3 forrnat(lx,d24.17,4x,i6)
4 format(lx,4(dl8.ll,2x))
5 forrnat(lx,i1,2x,2(d24.17,2x))
6 format(4x,2(d24.17,2x))
7 format(16x,2(d24.17,2x))
8 format(lx,2(d24.17,2x))

C
20 continue

close (1)
close (2)

stop
end

include 'rhsl. for'
include 'haming. for'
include 'h.for'
include 'leqt2f. for'
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c * SAMPLE PERIOD INPUT *
"c mu / number of timesteps(most likely reduced from SECTION output)
"c Jacobian constant / conversion sign
"c iteration tolerance / maximum number of iterat ions
"c initial guess for x / initial guess for per' d
"c general output
"c file for data uo be passed to program EXSYRL
c
c

0.95388000000U00005D-03 4000
0.315D+01 -0.10000000000000000D+01
1.d-10 20

-0.51366d0 6.25658d0
pl0out
exl0in
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C
program exsyrl

C

c -"EXTENDED, SYMPLECTIC, REAL" **********-*******

c - program to calculate the extended eigenvector
"c for a repeated root, symplectitize the eigenvector
"c matrix, and create the equivalent real eigenvector and
"c J matrices from the symplectic
c

implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)

c
c * PROGRAM COMMONS ***********************
c

dimension xww(2),xwc(2),itype(2)
dimension phi(4,4),rval(2,4),rvec(2,16)

c
complex*16 xxx(10),a(2,2),b(2,1),wwwcaipha(2),error
complex*16 val(4),fvec(4,4),xj(4,4),evec(4,4),tzvec(4,4)
complex*16 evec2(4,4),xj2(4,4)

c
equivalence (val, rval)
equivalence (fvec, rvec)
equivalence (ww, xww)
equivalence (wc, xwc)

c
character*10 filenamel
character*l0 filename2

c
c * READ INPUT DATA ***************************
c - data should be manually rearranged so any degenerate mode
c eigenvalues and eigenvectors are last
c

read(*,*) xmuxjac
read(*,*) periodnpts
read(*,*) ql,pl,q2,p2
read(*,*) qldot,pldot,q2dot,p2dot
do 20 i = 1,4

read(*,*) phi(i,l),phi(i,2),phi(i,3),phi(i,4)
20 contin~ie

do 40 i = 1,4
read(*,*) rval(lji),rval:2, i)

40 continue
do 60 i = 1,16

read(*,*) rvec(l,i),rvec(2,i)
60 continue

read(*,*) itype(l), itype(2)
c ******** type 0 = degenerate
c type I = positive/negative real
c type 2 = positive/negative imaginary
c
c ************** OPEN OUTPUT FILES *
c - file 1 is genera] output
c - file 2 is input to programs floquet and hamiltonian
c

read(*,*) filenamel
open (1, FILE=filenamel, STATUS="UNKNOWN')
read(*,*) filename2
open (2,FILE=filename2, STATUS="UNKNOWN')

c
c * REPEAT INPUT TO OUTPUT *
c

write(l,*) ' period=',period
write(l,*) ql=',ql

c
c ************ FIND POINCARE EXPONENTS AND J MATRIX **** *
c

write (, *)
write(l,*)'POINCARE EXPONENTS'
write(l,*) ' REAL IMAJ'
do 80 i = 1,4

do 100 j = 1,4
xj(j,i) = (0.dO, 0.dO)

100 continue
ww = val(i)

c
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c Qomplex log of eigenvalue over period
c

iii = int((i+1)/2)
if (itype(iii) .eq. 0) then

xwc(j.6 = 0.d0
xwc(2) =0.dO

elseif (itype(iii) .eq. 1) then
xwc(l) = dlog(dsqrt(xww(l)*xww(l)

& + xww(2)*xww(2))) /period
xwc(2) = .d0

elseif (itype(iii) .eq. 2) then
xwc(1) =0.dO
xwc(2) = datan2( xww(2), xww(1) ) /period

else
endi f
xj(i,i) = wc
write(1,2) i,,Jc

80 continue
if (itype(2) .eq. 0) xj(3,4)=(1.dO, 0.d0)

c
c *** assumes no more than one degenerate mode - pair placed second
c

write(l, *)
write(1,*)'J MATRIX'
write(1,*) I REAL IMAJ'
do 120 i =1,4

do 120 j = 1,4
if(j -eq. 1) then

write(1,2) ixj(j,i)

endif
120 continue

c
c **~ FIND EXTENDED EIGENVECTOR IF THERE IS ONE
c

if(itype(2) .ne. 0) goto 140
a(l,l) = phi (1,1) - val(4)
a(1,2) = phi(1,4)
a(2,1) = phi (3,1)
a(2,2) = phi (3, 4)
b(l,l) = fvec(1,3)*period
b(2,1) =fvec(3,3)*period
call cleqt2f(a,1,2,2,b,idig,xxx,ier)
if (ier .eq. 0) go to 160

write(l,*) 'stop 129 - MATRIX IS SINGULAR'
goto 2000

160 continue
f-e c(It 4) =b(l,1)
fe-(2,4) =(0.dO, 0.dO)
fvec(3,4) = (0.dO, 0.dO)
fvec(4,4) = b(2,I)

140 write(l,*)
write(l,*)IEIGENVECTOR COLUMNS AFTER EXTENDED FOUND (IF NEEDED)'
write(l,*) I REAL IMAJ'
do 180 i = 1,4

do 180 j =1,4
if(j .eq. 1) then

write(l,2) i,fvec(j,i)
else

write(1,3) fvec(j,i)
endif

180 continue
c
c ~*~*CHECK TO SEE IF EVECTORS AND EVALUES ARE VALID ***

c
call check(phi,val, fvec, period, error)
write(l, *)
write(1,*) 'max error in evalue and evector check'
write(l,*) 'error=',error

c
c FIND SYMPLECTIC EIGENVECTORS
c

call symplec(fvec, tzvec, error)
write(1, *)
write(l,*) 'max error in symplectic Il^T*Z*Ff
write(l,*) 'error=',error
ww = error
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if (dabs(xww(1)) .gt. 1.d-10) goto 2D0
if (dabs(xww(2)) .gt. 1.d-10) goto 230
goto 220

c
c **~ GET MULTIPLICATION FACTORS AND CORRECT F MATRIX ***

C
200 alpha(1) = (1.dO, 0.dO)/cdsqrt(tzvec(1,2))

alpha(2) = (1.dO, 0.dO)/cdsqrt(tzvec(3,4))
write(1,*) 'alphal=',alpha(l)
write(l,*) 'alpha2=',alpha(2)
do 240 i =1,4

evec(il1) =fvec(i,l)*alpha(1)
evec(i,2) = fvec(i,2)*alpha(1)
evec(i,3) =fvec(i,3)*alpha(2)
evec(i,4) =fvec(i,4)*alpha(2)

240 continue
call symplec (evec, tzvec, error)
write (1,*)
write(l,*) 'max error in symplectic EýT*Z*Ef
write(1,*) lerror'=',error
goto 260

220 do 280 i = 1,4
do 280 j =1,4

evec(j,i) =fvec(j,i)
280 continue
260 write(l,*)

write (1, *)'SYMPLECTIC EIGENVECTOR COLUMNS'
write(l,*) I REAL IMAJ'
do 300 i = 1,4

do 300 j =1,4
if(j .eq. 1) then

write(l,2) i,evec(j,i)
else

w rite(1,3) evec(j,i)
endi f

300 continue
c
c *********FIND REAL E AND J MATRICES *********

c
call real(evec,xj,evec2,xj2,itype)

C

call symplec(evec2,tzvec,error)
write (1,*)
write(1,*) 'max error in symplectic after E made real'
write(1,*) 'error=',error
write(l, *)
write(l,*)'SYMPLECTIC REAL EIGENVECTOR COLUMNS'
write(1,*) ' REAL IMAJ'
do 320 i = 1,4

do 320 j =1,4
if(j .eq. 1) then

write(l,2) i,evec2(j,i)
else

write(l,3) evec2(j,i)
endif

320 continue
write (1,*)
write(l,*)'REAL J MATRIX COLUMNS'
write(1,*) ' REAL IMAJ'
do 340 1 = 1,4

do 340 j =1,4
if(j .eq. 1) then

write(1,2) i,xj2(j,i)
else

write(1,3) xj2(j,i)
endif

340 continue
c
c ***********OUTPUT FOR NEXT PROGRAM
c

write(2,3) xniu,xjac
write (2,6) period, npts
write(2,7) ql,ploq2,p2
write(2,8) itype(l)ritype(2)
do 400 i = 1,4

do 400 j = 1,4



write(2,7) evec2(J,i)
400 continue

do 420 i = 1,4
do 420 j = 1,4

write(2,7) xj2(j,i)
420 continue

2000 continue

2 format(lx,il,2(2x,d24.17))
3 format(2x,2(2x,d24.17))
5 format(lx,d24.17)
6 format(lx,d24.17,4x,i6)
7 format(lx,4(2x,d24.17))
8 format (lx,1i2, 2x, i2)

close (1)
close (2)

stop
end

include 'cleqt2f. for'
include 'symplectic. for'
include 'check. for'
include 'real, for'
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"c ********* SAMPLE EXSYRL INPUT *
"c mu / Jacobian constant
"c period / number of timesteps
"o initial values of qi, pl, q2, p2
"o initial values of qidot, pidot, q2dot, p2dot
"c phi by row
"c real & imaginary components of eigenvalues
"c real & imaginary components of eigenveccors(matched in order with eigenvalues)
"c types of Poicare exponent pairs
"c general output file
"c file for data to be passed to FLOQUET and HAMILTONIAN
C
c

0.95388000000000005D-03 0.315D+01
0.62565804113518846D+01 4000

-0.5127081520827D+00 0.0000000000000D+00 0.0000000000000D+00 -0.1516521888144D+01
0.0000000000000D+00 0.2265881088747D+01 -0.1003813736061D+01 0.0000000000000D+00
0.8609790735321D+00 -0.1755076922110D-01 -0.3961686779363D-01 -0.5556742445356D-01
0.1686687698163D+03 0.8609790734677D+00 -0.3138081071241D+00 0.6775180018322D+02

-0.6775180018329D+02 0.5556742447948D-01 0.1125430816271D+01 -0.2722871816792D+02
0.3138081069484D+00 0.3961686779099D-01 0.8942606411584D-01 0.1125430816198D+01

0.98640988974257526D+00 -0.16430316317961827D+00
0.98640988974257526D+00 0.16430316317961827D+00
1.0D+00 0.00000000000000000D+00
1.0D+00 0.00000000000000000D+00

-0.70221866516062548D-12 -0.10442224677270372D-01
0.10000000000000000D+01 0.00000000000000000D+00

-0.39970546784512651D+00 -0.76641470947436119D-12
0.17951039960051318D-11 0.23570946055484081D-01

-0.70221866516062548D-12 0.10442224677270372D-01
0.10000000000000000D+01 0.00000000000000000D+00

-0.39970546784512651D+00 0.76641470947436119D-12
0.17951039960051318D-11 -0.23570946055484081D-01
0.00000000000000000D+00 0.dO
0.22658810887474097D+01 0.dO

-0.10038137360616357D+01 0.dO
0.OOOOOOOOOOOOOOOOOD+00 0.dO

-0.17366902140924529D-05 0.00000000000000000D+00
0.10000000000000000D+01 0.00000000000000000D+00

-0.44301253975986643D+00 0.00000000000000000D+00
0.43449248273103301D-05 0.00000000000000000D+00
2 0
exl0out
flOin
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C
program floquet

cc ************"FLOQUET" *************

c - turns state elements and elements of E into sets
"c of 100 Fourier coefficients in order to create
"c exact solution
c

implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)

c
c * PROGRAM COMMONS *
c

common /data/ xmu,xmua
common /ham/ t,x(20,4),f(20,4),err(20),hh,nn,mode
common /fdat/ xj(4,4)

c
dimension x(20,4),f(20,4),err(20),xww(2)
dimension s(4,200),v(4,4,200),itype(2)
dimension ck(10l),sk(l0l),fxn(200)
dimension vec(4,4),vecf(4,4),diff(4,4),x; 4,4)

c
character*10 filenamel, filenai"e2

c
c ******************** READ INPUT DATA *
c

read(*,*) xmur'jac
xmua = l.d0 - xmu
read(*,*) period, npts
hh ý period/(dble(npts))
itrip = npts/200
read(*,*) qlo,plo, q2o,p2o
read(*,*) itype(l),itype(2)

c
c ****** itest makes certain all elements of E and J are real
c

itest = 0
do 40 i = 1,4

do 40 j = 1,4
read(*,*) xww(l),xww(2)
if (xww(2) .gt. l.d-10) itest = 1
vec(j,i) = xww(1)

40 continue
do 60 i = 1,4

do 60 j = 1,4
read(*,*) xww(1),xww(2)
if (xww(2) .gt. l.d-10) itest = 1
xj(j,i) = xww(1)

60 continue
if (itest .eq. 0) goto 65

write(1,*) 'There is an imaginary component of E or J'
write(l,*) 'stop'
goto 2000

65 continue
c
c *************************** OPEN OUTPUT FILES *
c - file 1 is general output
c - file 2 is input to program exact
c

read(*,*) filenamel
open(1,FILE=filenamel, STATUS='UNKNOWN')
read(*,*) filename2
open (2, FILE=filename2, STATUS=' UNKNOWN')

c
c * REPEAT INPUT VALUES TO DATA FILE ****************
c

write(l,*) " xmu=',xmu
write(l,*) ' xjac=',xjac
write(l,*) ' period=',period
write(1,*) " points=',npts
write(l,*) " trip=',itrip
write(l,*) 'timestep=',hh
write(l,*) 'initial conditions'
write(l,*) ' qlo=',qlo
write(l,*) ' plo=, plo
write(l,*) I q2o=',q2o
write(l,*) I p2o=',p2o
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write(l,*) ' E MATRIX BY COLUMN'
do 80 i = 1,4

do 80 j = 1,4
if(j .eq. 1) then

write(1,2) i,vec(j,i)
else

write(1,3) vec(j,i)
endif

80 continue
write(l,*) ' J MATRIX BY COLUMN'
do 100 i = 1,4

do 100 j = 1,4
if(j .eq. 1) then

write(1,2) i,xj(j,i)
else

write(i,3) xj(j,i)
endif

100 continue
C
c ********************* SET UP INITIAL STATE ***************
C

x(l,l) = qlo
x(2,1) = plo
x(3,1) = q2o
x(4,1) = p2o

C
c * INITIALIZE E AT t(o) *
C

do 120 i = 1,4
do 120 j = 1,4

x(i*4+j,l) = vec(j,i)
120 continue

mode = 1
nn = 20
nxt = 0
t = 0.dO

C
c ***************** INITIALIZE HAMING *
C

call haming(nxt)
if(nxt .ne. 0) goto 140

write(l,*) 'FAILURE TO INITIALIZE - STOP 99'
write (1,7) f(l,l), f(2,1)
write (1,7) f(3,1), f(4,1)

goto 2000
140 continue

c
c ****************** BEGIN INTEGRATION LOOP *
c

do 160 i = 1,200
do 180 j = 1,4

s(j,i) = x(J,nxt)
do 180 k = 1,4

v(kj,i) = x((J*4)+k,nxt)
180 continue

do 200 ii = l,itrip
call haming(nxt)

200 continue
160 continue

c
c ************** FEED STATE/EVECTORS TO FOURIER *
c

write(2,5) xmu
write(2,6) periodnpts
write(2,8) itype(1),itype(2)
xnot = qlo - xmu
ynot = q2o
write(2,7) xnot,ynot
write(2,*) 'insert increase/decrease to xnot,xjac"
write(2,7) xjac, -1.dO
write(2,*) 'insert itrip value here'
write(2,*) 'insert two filenames here'
do 220 i = 1,4

do 240 j = 1,200
fxn(J) = s(ij)

240 continue
call fourier(fxn,cksk,100)
do 260 j = 1,100
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write(2,7) ck(j),sk(j)
260 continue
220 continue

do 280 1 = 1,4
do 280 j = 1,4

do 300 k = 1,200
fxn(k) = v(j,i,k)

300 continue
call fourier (fxn, ck, sk, 100)
do 320 k = 1,100

write(2,7) ck(k),sk(k)
320 cor~tinue
280 continue

c
c EXTRACT FINAL STATE
c

qlt = x(l,nxt)
plt = x(2,nxt)
q2t = x(3,nxt)
p2t = x(4,nxt)
do 340 i = 1,4

do 340 j =1,4
vecf(j,i) = x(i*4+j,nxt)

340 continue
c
c **********FINAL STATE CONDITIONS
c

write(l,*) 'STATE AT TfV
write(l,*) 'qlt=',qlt

write(l,*) 'plt=',plt

write(l,*) 'q2t=',q2t

write(l,*) 'p2t=',p2t

write(l,*) 'E MATRIX BY COLUMN'
do 360 i = 1,4

do 360 j = 1,4
if(j .eq. 1) then

write(1,2) i,vecf(j,i)
else

write(1,3) vecf(j,i)
endif
diff(),i) = vecf(j,i)-vec(j,i)

360 continue
C
c ***** DIFFERENCE IN INITIAL AND FINAL CONDITIONS
c

write (1,*)
write (1,*)
write(l,*) ' REAL E(t)-E(0)'
do 400 i = 1,4

do 400 j = 1,4
if(j .eq. 1) then

write(1,2) i,diff(j,i)
else

write(1,3) diff(j,i)
endif

400 continue

2 format(lx,i1,2x,d24.17)
3 format(4x,d24.17)
5 format(2x,d24.17)
6 format(2x,d24.17,2x,i6)
7 format(2x,2(2x,d24.17))
8 format (2x, i2, 4x, i2)

2000 continue

close (1)
close (2)

stop
end

include 'rhs2. for'
include 'haming. for'
include 'h.for'
include 'fourier. for'
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"C ***** SAM4PLE FLOQUET INPUT
"c mu / Jacobian constant
"c period / number of integration steps
"c initial values of ql, pl, q2, p2
"c types of Poincare exponent pairs
"C E matrix by column (real & imaginary components - imaginary should be 0.0)
"C J matrix by column (real & imaginary components - imaginary should be 0.0)
"c general output file
"c file for passing data to EXACT
c
C

0.95388000000003005D-03 0.315D+01
0.62565804113518846D+01 4000
-0.51270815208272758D+00 0.000000000000000000+00 0.000000000000000000+00

-0. 15165218881443634D+01
2 -1

0.32683240948231496D+00 0.27755575615628914D-16
0.OOOOOOOOOOOOOOOOOD+00 0.OOOOOOOOOOOOOOOOOD+00
0.23987922759260982D-10 0.000000000000000000+00

-0.73774979290191955D+00 -0.11102230246251565D-15
-0.21978807662748068D-10 0.00000000000000000D+00
0.31299116767113073D+02 0.35527136788005009D-14

-0.12510428110538175D+02 -0.88817841970012523D-15
0.561851676295077600-10 0.000300000000000000+00
0.831333063658177270+01 0.000000000000000000+00
0.000000000000000000+00 0.00000000000000000D+00
0.000000000000000000+00 0.OOOOOOOOOOOOOOOOOD+00

-0.207986412632198780+02 0.OOOOOOOOOOOOOOOOOD+00
0.OOOOOOOOOOOOOOOOOD+00 0.00000000000000000D+00

-0.111021275865798170+01 0.000000000000000000+00
0.491838173956355040+00 0.000000000000000000+00
0.000000000000000000+00 0.000000000000000000+00
0.OOOOOOOOOOOOOOOOOD+00 0.000000000000000000+00
0.263804700727756570-01 0.OOOOOOOOOOOOOOOOOD+00
0.000000000000000000+00 0.00000000000000000D+00
0.OOOOOOOOOOOOOOOOOD+00 0.000000000000000000+00

-0.263804700727756570-01 0.000000000000000000+00
0.OOOOOOOOOOOOOOOOOD+00 0.000000000000000000+00
0.000000000000000000+00 0.000000000000000000+00
0.000000000000000000+00 0.OOOOOOOOOOOOOOOOOD+00
o.oooooooooooooooooD+oo 0.O0OOOO0OOOOOO0000D+00
0.000000000000000000+00 0.000000000000000000+00
0.OOOOOOOOOOOOOOOOOD+00 0.000000000000000000+00
0.100000000000000000+01 0.000000000000000000+00
o.oooooooooooooooooD+oo 0.00000000000000000D+00
0.000000000000000000+00 0.000000000000000000+00
0.000000000000000000+00 0.OOOOOOOOOOOOOOOOOD+00
0.000000000000000000+00 0.OOOOOOOOOOOOOOOOOD+00
fl0outa
fq251n
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c
program hamiltonian

c
c ** * * * "HAMILTONIAN" ***
c - turns periodic coefficients needed to expand hamiltonian
c into sets of 100 fourier coefficients
c

implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)

c
c ************** PROGRAM COMMONS *

common /data/ xmu,xmua
common /ham/ t,x(20,4),f(20,4),err(20),hh,nn,mode
common /fdat/ xj(4,4)

c
dimension x(20,4),f(20,4),err(20),xww(2)
dimension ck(101),sk(101),fxn(200)
dimension c(20,200),s(4),itype(2),w(2)
dimension vec(4,4),vecf(4,4),diff(4,4),xj(4,4)
dimension e(4,4),xh3(4,4,4),tc(4,4,4)

c
equivalence (ww, xww)
character*l0 filenamel, filename2

c
c
c * READ INPUT DATA ******************
c

read(*,*) xmu
xmua = l.d0 - xmu
read(*,*) period, npts
itrip = npts/200
hh = period/(dble(npts))
read(*,*) qlo,plo,q2o,p2o
read(*,*) itype(1),itype(2)

c
c ****** itest makes certain all elements of E and J are real
c

itest = 0
do 40 i = 1,4

do 40 j = 1,4
read(*,*) xww(l),xww(2)
if (xww(2) .gt. l.d-10) itest = 1
vec(j,i) = xww(l)

40 continue
do 60 i = 1,4

do 60 j = 1,4
read(*,*) xww(l),xww(2)
if (xww(2) .gt. l.d-10) itest 1
xj(J,i) = xww(l)

60 continue
if (itest .eq. 0) goto 65

write(l,*) 'There is an imaginary component of E or J'
write(l,*) 'stop'
goto 2000

65 continue
c
c ************************** OPEN OUTPUT FILES *
c - file 1 is general output
c - file 2 is input to program expand
c

read(*,*) filenamel
open (1,FILE=filenamel, STATUS=" UNKNOWN")
read(*,*) filename2
open (2, FILE=filename2, STATUS=" UNKNOWN')

c
c * REPEAT INPUT VALUES TO DATA FILE *
c

write(l,*) ' xmu=',xmu
write(l,*) ' xjac=',xjac
write(l,*) period=',period
write(l,*) points=',npts
write(l,*) " trip=',itrip
write(l,*) "timestep=',hh
write(l,*) 'initial conditions'
write(l,*) I qlo=',qlo
write(l,*) I plo=',plo
write(l,*) I q2o=',q2o
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write(l,*) p 2 o=',p2o
write(l,*) ' E MATRIX BY COLUMN'
do 80 i = 1,4

do 80 j = 1,4
if(j .eq. 1) then

write(1,2) ivec(j,i)
else

write(l,3) vec(j,i)
endif

80 continue
write(l,*) ' J MATRIX BY COLUMN'
do 100 i = 1,4

do 100 j = 1,4
if(j .eq. 1) then

write(1,2) i,xj(j,i)
else

write (1, 3) xj (j,i)
endif

100 continue
c
c ********************** SET UP INITIAL STATE *
c

x(l,l) = qlo
x(2,1) = plo
x(3,1) = q2o
x(4,1) = p2o

c
c ************** INITIALIZE F AT t(o) *
c

do 120 i = 1,4
do 120 j = 1,4

x(i*4+j,l) = vec(j,i)
120 continue

mode = 1
nn = 20
nxt = 0
t = 0.dO

c
c * INITIALIZE HAMING *
c

call haming(nxt)
if(nxt .ne. 0) goto 140

write(l,*) 'FAILURE TO INITIALIZE - STOP 99'
write (1,7) f(1,1), f(2,1)
write(l,7) f(3,i),f(4,1)

goto 2000
140 continue

c
c ****************** BEGIN INTEGRATION LOOP *****************
c

do 200 i = 1,200
do 220 3 = 1,4

s(j) = x(J,nxt)
do 220 k = 1,4

e(k,j) = x(J*4+k,nxt)
220 continue

c
c * COMPUTE THIRD ORDER TENSOR **************
c

do 240 J = 1,4
do 240 k = 1,4

do 240 m = 1,4
xh3(j,k,m) = h(s,3,j,km,0,0)
tc(J,k,mi) = 0.d0

240 continue
c
c * COMPUTE PERIODIC COEFFICIENTS *
c - first loop variable tc -

c
do 260 J = 1,4

do 260 k = 1,4
do 260 m = 1,4

c
c - second loop variable xh3 -
c

do 260 JJ = 1,4
do 260 kk = 1,4

do 260 mm = 1,4
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tc(j,k,m) = tc(j,k,m) +
& xh3(jj,kk, -r)*e(j),J)*e(kk,k)*e(rlu,m)

260 continue
c(1,i) = tc(1,l,1)/6.dO
c(2,i) = (tc(l,l,2)+tc(1,2,1)+tc(2,1,1))/6.dO
c(3,i) = (tc(1,l,3)+tc(l,3,l)+tc(3,l,1))/6.dO
c(4, i) = (tc(1, 1,4)+tc(1,4, 1)+tc(4, 1,1)) /6.d0
c(5,i) = (tc(1,2,2)+tc(2,1,2)+tc(2,2,l) )/6.d0
c(6, i) = (tc (1,2,3) +tc (1,3,2) +tc (2,1,3) +tc (2,3,1)

& +tc(3,l,2)+tc(3,2,l))/6.dO
c(7,i) = (tc(1,2,4)+tc(1,4,2)+tc(2,1,4)+tc(2,4,1)

& +tc (4,1,2) +tc (4,2,1)) /6.dO
c(8,i) =(tc(1,3,3)+tc(3,1,3)+tc(3,3,1))/6.dO
c(9,i) = (tc(1,3,4)+tc(l,4,3)+tc(3,1,4)+tc(3,4,1)

& +tc (4,1,3) +tc (4,3,1)) /6.dO
c(10,i) = (tc(1,4,4)+tc(4,1,4)+tc(4,4,1fl/6.dO
c(11,i) = tc(2,2,2)/6.d0
c(12,i) = (tc(2,2,3)+tc(2,3,2)+tc(3,2,2))/6.dO
c(13,i) =(tc(2,2,4)+tc(2,4,2)+tc(4,2,2))/6.dO
c(14,i) = (tc(2,3,3)+tc(3,2,3)+tc(3,3,2))/6.d0
c(15, i) = (tc(2, 3, 4)+tc (2,4, 3)+tc(3, 2, 4)+tc (3, 4,2)

& +tc(4,2,3)+tc(4,3,2))/6.dO
c(16,i) = (tc(2,4,4)+tc(4,2,4)+tc(4,4,2))/6.dO
c(17,i) = tc(3,3,3)/6.dO
c(18,i) = (tc(3,3,4)+tc(3,4,3)+tc(4,3,3))/6.dO
c(19,i) =(tc(3,4,4)+tc(4,3,4)+tc(4,4,3))/6.dO
c(20,i) = tc(4,4,4)/6.dO
do 360 j=l,itrip

call haming(nxt)
360 continue
200 continue

c
c ********* COMPUTE FOURIER COEFFICIENTS FROM PERIODIC ONES **

c
write(2, 6) period,npts
write(2,*) 'insert modal initial displacements here'
write(2,*) 'insert itrip value here'
do 380 i = 1,3,2

iii = int((i+1)/2)
if (itype(iii) .eq. 2) then

W(lii) = xj(i,i+1)
else

W(iii) = xj (i, i)
endif

380 continue
write(217) w(l),w(2)
write(2,8) itype(1),itype(2)
write(2,*) 'insert two filenames here'
do 400 i = 1,20

do 420 j = 1,200
fxn(j) = c(i,j)

420 continue
call fourier (fxn, ck, sk, 100)
do 440 j = 1,100

write(2,7) ck(j),sk(j)
440 continue
400 continue

C
c EXTRACT FINAL STATE**********
c

qit = x(1,nxt)
pit = x(2,nxt)
q2t = x(3,nxt)
p2t = x(4,nxt)
do 480 i = 1,4

do 480 j 1,4
vecf(j,i) =x(i*4+j,nxt)

480 continue
0
c ********* FINAL STATE CONDITIONS ********

0
write(1,*) 'STATE AT TV'
write(l,*) 'qlt=',qlt

write(l,*) 'plt',,plt

write(1,*) q2t=',q2t
write(1,*) 'p2t=',p2t

write(1,*) 'E MATRIX BY COLUMN'
do 500 i = 1,4
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do 500 j = 1, 4
if(j .eq. 1) then

write(1,2) i,vecf(j,i)
else

write(1,3) vecf(j,i)
endif
diff(j,i) = vec(j,i)-vecf(j,i)

500 continue
write(1,*) ' REAL E(t)-E(0)'
do 520 i = 1,4

do 520 j = 1,4
if(j .eq. 1) then

write(1,2) i,diff(j,i)
else

write(1,3) diff(j,i)
endif

520 continue

2 format(lx,il,2x,d24.17)
3 format (4x, d24. 11)
6 format (2xrd24.17,2x,iE)
7 format(2x,2(2x,d24.17))
8 format (2x, i2, 4x, i2)

2000 continue

close (1)
close (2)

stop
end

include 'rhs2. for'
include 'haming.for'
include 'h.for'
include 'fourier. for'
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c SAMPLE HAM4ILTONIAN INPUT
"c mu / Jacobian constant
"c period / number of integration steps
"c initial values of qi, p1, q2, p2
"c types of Poincare exponent pairs
"c E matrix by column (real & imaginary components - imaginary should be 0.0)
"c J matrix by column (real & imaginary components - imaginary should he 0.0)
"c general output file
"c file for passing data to EXPANDED
c
c

0.95388000000000005D-03 0.315D+01
0.62565804113518846D+01 4000
-0.5127081520827D+00 0.OOOOOOOOOOOOOD+00 0.OOOOOOOOOCOOOD+00 -0.1516321888144D+01

2 -1
0.32683240948231496D+00 0.27755575615628914D-16
0.000000000000000000+00 0.000000000000000000+00
0.23987922759260982D-10 0.000000000000000000+00

-0. 73774979290191955D+00 -0.11102230246251565D-15
-0.21978807662748068D-10 0.OOOOOOOOOOOOOOOOOD+00
0.31299116767113073D+02 0.35527136788005009D-14

-0.12510428110538175D+02 -0.88817841970012523D-15
0.561851676295077600-10 0.000000000000000000+00
0.83133306365817727D+01 0.000000000000000000+00
0.OOOOOOOOOOOOOOOOOD+00 0.000000000000000000+00
0.00000000000000000D+00 0.000000000000000000+00

-0.207986412632198?8D+02 0.000000000000000000+00
0.000000000000000000+00 0.000000000000000000+00

-0.11102127586579817D+01 0.000000000000000000+00
0.491838173956355040+00 0.000000000000000000+00
0.000000000000000000+00 0.000000000000000000+00
0.000000000000000000+00 0.000000000000000000+00
0.263804700727756570-01 0.000000000000000000+00
0.000000000000000000+00 0.000000000000000000+00
0.000000000000000000+00 0.000000000000000000+00

-0.263804700727756570-01 0.000000000000000000+00
0.000000000000000000+00 0.00000000000000000D+00
0.000000000000000000+00 0.OOOOOOOOOOOOOOOOOD+00
0.000000000000000000+00 0.000000000000000000+00
0.000000000000000000+00 0.000000000000000000+00
0.000000000000000000+00 0.00000000000000000D+00
0.000000000000000000+00 0.000000000000000000+00
0.10000000000000000D+01 0.OOOOOOOOOOOOOOOOOD+00
0.000000000000000000+00 0.000000000000000000+00
0.000000000000000000+00 0.OOOOOOOOOOOOOOOOOD+00
0.000000000000000000+00 0.000000000000000000+00
0.000000000000000000+00 0.000000000000000000+00
flooutb
hm2 Sin
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C

program exact
c
c * "EXACT- *************************
c - integrates a nearly periodic orbit, subtracts
c the periodic reference, transforms the
c result into modal variables, and creates a plotfile
c of the modal variables bl, b2, b3, and b4
c

implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)

c
c ******************** PROGRAM COMMONS *
c

cornmon /data/ xmu,xmua
common /ham/ t,x(20,4),f(20,4),err(20),hh,nnmode

c
dimension x(20,4),f(20,4),err(20)
dimension cf(20),sinn(100),coss(100)
dimension ck(20,100),sk(20,100),dx(4,l)
dimension e(4,4),xxx(50),itype(2)

c
equivalence (ww, xww)

c
character*10 filenamel, filename2

c
c * read input data ********************
c

read(*,*) xmu
xmua = l.d0 - xmu
read(*,*) period, npts
hh = period/(dble(npts))
read(*,*) itype(l),itype(2)
read(*,*) xnot,ynot
read(*,*) xd,xjacd
xnot = xnot+xd
read(*,*) xjac,syn
xjac = xjac + xjacd
read(*,*) itrip

c
c * OPEN OUTPUT FILES *******************
c - file 1 is general output
c - file 2 is a plotfile of the exact solution
c

read(*,*) filenamel
open (i,FILE=filenamel,STATUS="UNKNOWN')
read(*,*) filename2
open (2, FILE=filename2, STATUS=' UNKNOWN')

c
do 60 i = 1,20

do 60 J = 1,100
read(*,*) ck(i,j),sk(i,j)

60 continue
c
c ************* GET ql,pl,q2,p2 FOR GIVEN x0,y0, AND JACOBIAN *
c

q1 = xnot+xmu
q2 = ynot
xham = (xmu*xmua-xJac)/2.d0
rl = dsqrt((ql-xmu)*(ql-xmu) + q2*q2)
r2 = dsqrt((ql+xmua)*(ql+xmua) + q2*q2)
d = xham + xmua/rl + xmu/r2
g = q2/(ql-xmu)
a = 0.5d0*(g*g + l.dO)
b = -(g*g*xmu + g*q2 + ql)
c = 0.5d0*g*g*xmu*xmu + g*q2*xmu - d
disc = b*b - 4.dO*a*c
if( disc .1t. 0.dO) then

write (1,*) 'stop 10 - no roots'
go to 2000

endif
p2 = (-b+syn*dsqrt (disc)) / (2.dO*a)
pl = g*(xmu-p2)

c
c * REPEAT INPUT VALUES TO DATA FILE *
c

write(i,*) 'mu=',xmu,' 1-mu=',xmua
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wr.Lte(1,*) 'step=',hh,' period=',period
write(l,*) 'number of points=',flpts
write (1, *
write(l,*) 'initial conditions (Jefferys)'

write(l,*) 'Jacobian constant=',xjac
write (1,*)
write(1,*) 'initial conditions (Szebehely)'

write(l,*) 'q2*=',ql,' pl=',pl

write(l,*) 'Hamniltonian constant=',xham

mode =0
nn = 4
nxt =0
t =0.dO

pi = dacos (-I dO)
wO = (2.dO*pi)/period
write(l,*) ' w0=',w0

c

c INITIAL CONDITIONS *********

C

x(1,l) = qi
x(2,1) =p1
x(3,l) = q2
x(4,1) =p

2

c

call haming(nxt)

c TURN OFF SECOND EOM EVALUATION *********

c
nxt =-nxt
if(nxt .ne. 0) go to 499

write (l,*) 'stop 99 - unable to start Haming'
go to 2000

499 continue
c
c ~ ** **** INTEGRATION LOOP ************ *

c
do 500 i = 0,250

c

c compute sin(n*theta), cos(n*theta), n=1,50
c

coss (1) =uccos(wo*t)
sinn(1) =dsin(wO*t)
coss(2) =2.dO*coss(l)*coss(l)-1.do
sinn(2) =2.dO*sinn(l)*coss(l)
do 520 j = 3,100

coss(i) =2.d0*coss(j-l)*coDss(1)-cos5,(1-2)
sinn(j) = 2.d0*sinn(j-l) *coss(I)-sinn(j-2)

520 continue
c
c *~ REASSEMBLE PERIODIC TRAJ AND EIGENVECTOR MATRIX * **

c
do 540 j =1,20

cf(j) =ck(j,l)
do 540 k = 1,99

cf(j) =cf(j) + ck(j,k+1)*coss(k)
+ sk(j,k+l)*sinn(k)

540 continue
do 560 j = 1,4

dx(j,l) = x(j,iabs(nxt))-cf(j)
560 continue

c
c *******PLACE EIGENVECTORS IN 4X4 MATRIX FOR INVERSION **

c
do 580 j =1,4

,o 580 k = 1,4
e(k,j) = cf(J*4+k)

580 continue
c -1
c ** CALCULATE DELTA b WITH DELTA b = EVEC7TORS *DELTA x

idig = 0
call leqt2t(e,1,4,4,dxridigjxxx,ier)
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if (i .ne. 0) goto 620
write (l,*)
write(l,*) 'Initial Modal Conditions'
write(l,*) I bl - b4'
write(1,5) dx(1,1)
write(1,5) dx(2,1)
write(l,5) dx(3,1)
write(l,5) dx(4,1)

620 continue
write(2, 6) t,dx(l,l),dx(2,l),dx(3, l),dx(4,l)
do 640 j =l,itrip

call haming(nxt)
640 continue
500 continue

c
c *********EXTRACT FINAL CONDITIONS
c

write (1,*)
write (1,*)
write(l,*) 'final state minus initial state (Szebehely)'
write(l,*) I ql,pl,q2,p2'
write(l,*) x(1,nxt)-ql
write(l,*) x(2,nxt)-pl
write(l,*) x(3,nxt)-q2
write(l,*) x(4,nxt)-p2

2000 continue

2 format(2x,2(2x,d24.17))
4 format(4x,d12.5,2x,d24.17)
5 format(4x,d24.17)
6 format(2x,5(2x,e23.16))

close (1)
close (2)
close (3)
close (4)

stop
end

include 'rhsl. for'
include 'haming. for'
include 'h.for'
include 'leqt2f. for'
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c ************** SAMPLE EXACT INPUT *
"¢ mu
"c period / number of integration steps(for calculation of timestep)
"c types of Poincare exponent pairs
"c initial value of x and y (Jefferys eom initial conditions)
"c amount of change to x / amount of change to Jacobian constant
"c initial Jacobian constant / conversion sign
"c integration steps between sampled data(250 total data samples)
"c general output
"c plot file of time and modal variables
"c 20 sets of 100 sine and cosine Fourier representation pairs
c
c

0.9538800000000000D-03
0.62565804113518473D+01 4000
2 -1

-0.51366203208274741D+00 0.OOOOOOOOOOOOOOOOOD+00
0.dO 0.dO
3.15d0 -l.dO
630
fqlout
exaplotl

0.14272865159998943D-02 0.00000000000000000D+00
-0.44658422312811241D+00 0.50812964946800321D-13

0.95570615732216700D-04 0.15916670759175133D-12
-0.58321183772268116D-01 -0.24715715585266195D-13

etc.... (a total of 2000 pairs of numbers)
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c
program expanded

c
c ********************* "EXPANDED" *********************
c - Using the periodic coefficients made by the program
c hamiltonian, the eom for the truncated
c haliitonian ze are integrated. A plotfile of modal
c variables bl, b2,b3, and b4 is created.
c

implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)

C
c **************** PROGRAM COMMONS **********************
c

common /datarhs/ wO,wl,w2,ck(20,100),sk(100,50),itype(2)
common /ham/ t,x(20,4),f(20,4),err(20),hh,nn,mode

c
dimension x(20,4),f(20,4),err(20),itype(2)
dimension ck(20,100),sk(20,100),bO(4),b(4)

c
character*10 filenamel, filename2

c
c
c * READ INPUT DATA *
c

read(*,*) period,npts
hh = period/(dble(npts))
do 40 i = 1,4

read(*,*) b0(i)
40 continue

read(*,*) itrip
read(*,*) wl,w2
read(*,*) itype(l),itype(2)

c
c O 3PEN OUTPUT FILES *
c - file 1 is general output
c - file 2 is a plotfile for the expanded case
c

read(*,*) filenamel
open (l,FILE=filenamel, STATUS='UNKNOWN")
read(*,*) filename2
open (2, FILE=filename2, STATUS=' UNKNOWN")

c
do 60 i = 1,20

do 60 j = 1,100
read(*,*) ck(i,j),sk(i,j)

60 continue
c
c ************ OUTPUT INPUTS *
c

write(l,*) orbit period=',period
write(l,*) # of points=',npts
write(l,*) timestep=',hh
write(l,*) 'initial state (MODAL)'
write(l,*) bl=',b0(l)
write(l,*) b2=',bO(2)
write(l,*) b3=',bO(3)
write(l,*) b4=',bO(4)

c
c ************** SET UP INITIAL STATE *
c

do 80 i = 1,4
x(i,l) = bO(i)

80 continue
c

mode = 0
nn = 4
nxt = 0
t = 0.dO

c
pi = dacos(-1.dO)
wO = 2.dO*pi/period

c
c * INITIALIZING HAMING *
c

call haming(nxt)
if(nxt .ne. 0) go to 199
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write (l,*) 'stop 99 - unable to start Haining'
go to 2000

199 continue
c
c BEGIN INTEGRATION LOOP
C

do 220 i = 1,250
do 240 j =1,4

b(j) =x(j,nxt)

240 continue

do 300 j = ,itrip
call haming(nxt)

300 crontinue
220 continue

c
c EXTRACT FINAL STATE
c

do 340 j =1,4
b(j) =x(j,nxt)

340 continue
write (1,*)
write(1,*) 'final state (Modal)'
write(l,*) I b1=',b(l)
write(l,*) I b2=',b(2)
write(1,*) ' b3=',b(3)
write(1,*) ' b4=',b(4)

2000 continue

2 format(2x,2(2x,d24.1'7))
3 format(4x,d12.5,2x,d24.17)
4 format(2x,5(2xje23.16))

close (1)
close (2)

stop
end

include 'harning. for'
include 'rhs3. for'
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c **************** SAMPLE EXPANDED INPUT *
"c period / number of integration steps(used to determine the timestep)
"c four initial modal displacements(found in the general output of EXACT)
"c integration steps between sampled data(250 total data samples)
"c value of omega for Poincare exponent pairs (0.0 in degenerate case)
"c types of Poincare exponent pairs
"c general output
"c plot file of time and modal variables
"c 20 sets of 100 sine and cosine Fourier representation pairs
c
c

0.62565804113518473D+01 4000
0.39599531533278684D-12

-0.19873186154673566D-15
-0.14793686800523243D-13
-0.10107539548798371D-13

630
-0.2638047004D-01 0.00000000000D+00

2 -1
-0.26380470049156036D-01

2
hmlout
expplotl

0.54375306107848423D-01 0.OOOOOOOOOOOOOOOOOD+00
0.11386208422001964D-02 0.18637175136504425D-13
0.73473610830684946D-01 0.23774386834207739D-10

-0.54706262117310002D-04 -0.13772226414854315D-12
-0.93120150715344754D-01 0.17098303259355240D-10
etc.... (a total of 2000 pairs of numbers)
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c
subroutine haming(nxt)

c
"c haming is an ordinary differential equations integrator
"c it is a fourth order predictor-corrector algorithm
"c which means that it carries along the last four
"c values of the state vector, and extrapolates these
"c values to obtain the next value (the prediction part)
"c and then corrects the extrapolated value to find a
"c new value for the state vector.
c
"c the value nxt in the call specifies which of the 4 values
"c of the state vector is the "next" one.
"c nxt is updated by haming automatically, and is zero on
"c the first call
c
"c the user supplies an external routine rhs(nxt) which
"c evaluates the equations of motion
c

common /ham/ x,y(20,4),f(20,4),errest(20),h,n,mode
C double precision x,y,f,errest,h,hh,xo,tol

implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)

c
dimension y(20,4),f(20,4),errest(20)

c
c all of the good stuff is in this common block.
c x is the independent variable ( time )
c y(6,4) is the state vector- 4 copies of it, with nxt
c pointing at the next one
c f(6,4) are the equations of motion, again four copies
c a call to rhs(nxt) updates an entry in f
c errest is an estimate of the truncation error - normally not
c used
c n is the number of equations being integrated - 6 or 42 here
c h is the time step
c mode is 0 for just EOM, 1 for both EOM and EOV
c

tol = 0.0000000001d+00
c switch on starting algoritluc, or normal propagation

if(nxt) 190,10,200
c
"c this is hamings starting algorithm .... a predictor - corrector
"c needs 4 values of the state vector, and you only have one- the
"c initial conditions.
"c haming uses a Picard iteration (slow and painful) to get the
"c other three.
"c if it fails, nxt will still be zero upon exit, otherwise
"c nxt will be 1, and you are all set to go
c

10 xo = x
hh = h/2.0d+00
call rhs(l)
do 40 1 = 2,4
x = x + hh
do 20 i = l,n

20 y(i,l) = y(i,l-l) + hh*f(i,l-l)
call rhs(l)
x = x + hh
do 30 i l,n

30 y(il) = y(i,l-l) + h*f(i,l)
40 call rhs(l)

jsw = -10
50 isw = 1

do 120 i = l,n
hh = y(i,l) + h*( 9.0d+00*f(i,l) + 19.0d+00*f(i,2)

1 - 5.0d+00*f(i,3) + f(i,4) ) / 24.0d+00
if( dabs( hh - y(i,2)) .1t. tol ) go to 70
isw = 0

70 y(i,2) = hh
hh = y(i,l) + h*( f(i,l) + 4.0d+00*f(i,2) + f(i,3))/3.0d+00
if( dabs( hh-y(i,3)) .1t. tol ) go to 90
isw = 0

90 y(i,3) = hh
hh = y(i,1) + h*( 3.0d+00*f(i,1) + 9.0d+00*f(i,2) + 9.0d+00*f(i,3)

1 + 3.0d+00*f(i,4) ) / 8.0d+00
if( dabs(hh-y(i,4)) .1t. tol ) go to 110

130



isW = 0
110 y(i,4) = hh
120 continue

X = XO
do 130 1 = 2,4
X x + h

130 call rhs(1)
if(isw) 140,140,150

140 jsw = jsw + 1
if(jsw) 50,280,280

150 x = xo
isw = 1
jsw = 1
do 160 i = l,n

160 errest(i) = O.OdO
nxt = 1
go to 280

190 jsw = 2
nxt = iabs(nxt)

C
c this is hamings normal propagation loop -
c

200 x = x + h
npl = mod(nxt,4) + 1
go to (210,230),isw

c permute the index nxt modulo 4
210 go to (270,270,270,220),nxt
220 isw = 2
230 nm2 = mod(npl,4) + 1

nml = mod(nm2,4) + 1
npo = mod(nml,4) + 1

C
c this is the predictor part
C

do 240 i = 1,n
f(i,nm2) = y(i,npl) + 4.0d+00*h*( 2.0d+00*f(i,npo) - f(i,nml)

1 + 2.0d+00*f(i,nm2) ) / 3.0d+00
240 y(i,npl) = f(i,nm2) - 0.925619835dO*errest(i)

C
"c now the corrector - fix up the extrapolated state
"c based on the better value of the equations of motion
C

call rhs(npl)
do 250 i = l,n
y(i,npl) = ( 9.0d+00*y(i,npo) - y(i,nm2) + 3.0d+00*h*( f(i,npl)

1 + 2.0d+00*f(i,npo) - f(i,nml) ) ) / 8.0d+00
errest(i) = f(i,nm2) - y(i,npl)

250 y(i,npl) = y(i,npl) + 0.0743801653d0 * errest(i)
go to (260,270),jsw

260 call rhs(npl)
270 nxt = npl
280 return

end
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c
function h(x,iord,i, j,k,l,m)

c restricted problem in canonical coordinates
c
c state vector x = ( ql, pl, q2, p2
c

dimension x(4)
common /data/ xmuxmua
implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)

c
c preliminaries
c

qa = x(1) - xmu
qb = x(1) + xmua
rl = (qa*qa + x(3)*x(3))**.5dO
r2 = (qb*qb + x(3)*x(3))**.5dO

c
c branch on order
c

jord = iord + 1
go to (1, 1000, 2000, 3000),jord

c
c
c ** **
c ** Order Zero **

c ** **
c
c

1 continue
h = 0.5d0*(x(2)*x(2) + x(4)*x(4)) + x(3)*x(2) - x(l)*x(4)

1 - xmua/rl - xmu/r2
return

1000 continue
c

c ** **

c ** Order One **
c ** **
c
cc

r13 = rl**3.dO
r23 = r2**3.dO
go to (1001, 1002, 1003, 1004), i

c
1001 h = -x(4) + xmua*qa/r13 + xmu*qb/r23

return
1002 h = x(2) + x(3)

return
1003 h = x(2) + xmua*x(3)/rl3 + xmu*x(3)/r23

return
1004 h = x(4) - x(1)

return
c

2000 continue
c

c ** **

c ** Order Two **
c ** **

c
c

r13 = rl**3.dO
r23 = r2**3.dO
r15 = rl**5.dO
r25 = r2**5.dO

c
go to (2001, 2002, 2003, 2004),i

2001 go to (2011, 2012, 2013, 2014),j
2002 go to (2021, 2022, 2023, 2024),j
2003 go to (2031, 2032, 2033, 2034),j
2004 go to (2041, 2042, 2043, 2044),j

c
2011 h = xmua/rl3 + xmu/r23 -3.dO*xmua*qa*qa/r15

1 -3.dO*xmu*qb*qb/r25
return
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2012 h = O.dO
return

2013 h = -3.dO*xmua*qa*x(3)/rlS 3.dO*xmi*qb*x(3)/r25
return

2014 h = -I.dO
return

C
2021 h = O.dO

return
2022 h = l.dO

return
2023 h = l.dO

return
2024 h = O.dO

return
c
2031 go to 2013
2032 h = l.dO

return
2033 h = -3.dO*xmua*x(3)*x(3)/rl5 3.dO*xmu*x(3)*x(3)/r25

I + xmua/rl3 + xmu/r23
return

2034 h = O.dO
return

c
2041 h = -l.dO

return
2042 h = O.dO

return
2043 h = O.dO

return
2044 h = l.dO

return
C
3000 continue

c
c
c
c Order Three
c
c
c

r15 = rl**5.dO
r25 = r2**5.dO
r17 = rl**7.dO
r27 = r2**7.dO

c
go to (30001, 30002, 30003, 30004),i

30001 go to (30110, 30120, 30130, 30140),j
30002 go to (30210, 30220, 30230, 30240),j
30003 go to (30310, 30320, 30330, 30340),j
30004 go to (30410, 30420, 30430, 30440),j
c note matrix is quite sparse now .......
30110 go to (30111, 30112, 30113, 30114),k
30130 go to (30131, 30132, 30133, 30134),k
30310 go to (30311, 30312, 30313, 30314),k
30330 go to (30331, 30332, 30333, 30334),k
C
30111 h = -9.dO*xmua*qa/rl5 - 9.dO*xmu*qb/r25

1 + 15.dO*xmua*qa*qa*qa/rl7 + 15.dO*xmu*qb*qb*qb/r27
return

30112 h = O.dO
return

30113 h = -3.dO*xmua*x(3)/rl5 - 3.dO*xmu*x(3)/r25
1 + 15.dO*xmua*qa*qa*x(3)/rl7 + 15.dO*xmu*qb*qb*x(3)/r27
return

30114 h = O.dO
return

c
30120 h = O.dO

return
c
30131 go to 30113
30132 h = O.dO

return
30133 h = -3.dO*xmuavqa/rl5 - 3.dO*xmu*qb/r25

1 + 15.dO*xmua*qa*x(3)*x(3)/rl7 + 15.dO*xmu*qb*x(3)*x(3)/r27
return
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30134 h = O.dO
return

C
30140 h = O.dO

return
30210 h = 0.dO

return
30220 h = O.dO

return
30230 h = O.dO

return
30240 h = O.dO

return
c
30311 go to 30113
30312 h = O.dO

return
30313 go to 30133
30314 h = O.dO

return
c
30320 h = O.dO

return
c
30331 go to 30133
30332 h = O.dO

return
30333 h = -9.dO*xmua*x(3)/rl5 - 9.dO*xmu*x(3)/r25

1 + 15.dO*(xmua/rl7 + xmu/r27)*x(3)*x(3)*x(3)
return

c
30334 h = O.dO

return
30340 h = O.dO

return
30410 h = O.dO

return
30420 h = O.dO

return
30430 h = O.dO

return
30440 h = O.dO

return
c

end
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C
subroutine leqt2f(a,m,n,nn,b,idgt,x,ier)

c
"c gaussian elimination with maximal pivoting
"c interface simulates IMSL routine
"c solution of a system of linear equations for m right sides
"c a: matrix of system
c m: number of rhs
c n: order of a, rows in b
"c ia: row dimension of a,b
"c b: right hand sides .... solution on return
"c idgt: ignored here .... in imsl O=no acc test on input
c idgt= #digits ok on output in imsl
"c x: in imsl, n**2 + 3*n
"c ier: 129: singular matrix, O=ok
c

dimension a(nn,nn),b(nn,m),irr(50),x(1)
double precision a,b,x,anorm,amax,ptol

C
"c find max norm of a

anorm = O.dO
do 5 i = l,n

do 5 j = l,n
if(dabs(a(i,j)) .gt. anorm) anorm = dabs(a(i,j))

5 continue
"c set tolerance = 2** (- number of binary digits in mantissa)

tol = l.d-12
ier = 0
id = 1
do 10 i = l,n

irr(i) = 0
10 continue
20 ir 1

is = 1
amax = O.dO

"c find max pivot
do 60 i = l,n

if(irr(i)) 60,30,60
30 do 50 j = l,n

p = dabs (a(i, j))
if(p-amax) 50,50,40

40 ir = i
is = j
amax = p

50 continue
60 continue

"c singularity test
if(amax/anorm .gt. tol) go to 70
ier = 129
go to 120

"c forward elimination
70 irr(ir) = is

do 90 i = l,n
if(i .eq. ir) go to 90
p = a(i,is)/a(ir, is)
do 80 j = l,n

a(i,j) = a(ij) - p*a(ir,j)
80 continue

a(i,is) = 0.0
do 85 j = l,m

b(i,j) = b(i,j) - p*b(ir,j)
85 continue
90 continue

id = id + I
if(id .le. n) go to 20

"c back substitution
do 115 j = l,m

do 100 i = l,n
ir = irr(i)
x(ir) = b(i,J)/a(i,ir)

100 continue
do 110 i = 1,n

b(i,j) = x(i)
110 continue
115 continue
120 return

end

135



c
subroutine cleqt2f(a,m,nnn,b,ldgt,x,ier)

c
"c complex version of
"c gaussian elimination with maximal pivoting
"c interface simulates IMSL routine
"c solution of a system of linear equations for m right sides
"c a: matrix of system
"c m: number of rhs
"c n: order of a, rows in b
"c is: row dimension of a,b
"c b: right hand sides .... solution on return
"c idgt: ignored here .... in imsl O=no acc test on input
c idgt= #digits ok on output in imsl
"c x: in imsl, n**2 + 3*n
"c ier: 129: singular matrix, O=ok
c

implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)
complex*16 a(nn,nn),b(nn,m),x(28),check,d
dimension irr(50),rcheck(2)
equivalence (check, rcheck)

c
"c find max norm of a

anorm = O.dO
do 5 i = 1,n

do 5 j = l,n
check a(i,j)
temp = dsqrt(rcheck(l)*rcheck(1)

1 +rcheck (2) *rcheck (2))
if(temp .gt. anorm) anorm = temp

5 continue
"c set tolerance = 2** (- number of binary digits in mantissa)

tol = l.d-12
ier = 0
id = 1
do 10 i = l,n

irr(i) = 0
10 continue
20 ir = 1

is = 1
amax = O.dO

"c find max pivot
do 60 i = l,n

if(irr(i)) 60,30,60
30 do 50 j = l,n

check = a(i,j)
p = dsqrt(rcheck(i)*rcheck(1)

1 +rcheck (2) *rcheck (2))
if(p-amax) 50,50,40

40 ir = i
is = j
amax = p

50 continue
60 continue

"c singularity test
if(amax/anorm .gt. tol) go to 70
ier = 129
go to 120

"c forward elimination
70 irr(ir) = is

do 90 i = 1,n
if(i .eq. ir) go to 90
d = a(i,is)/a(ir,is)
do 80 j = 1,n

a(i,j) = a(i,j) - d*a(ir,j)
80 continue

a(i,is) = 0.0
do 85 j = 1,m

b(i,j) = b(i,j) - d*b(ir,j)
85 continue
90 continue

id = id + 1
if(id .le. n) go to 20

"c back substitution
do 115 j = l,m

do 100 i = l,n
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ir = irr(i)
x(ir) = b(i,j)/a(i,ir)

100 continue
do 110 i = I,n

b(i, j) = x(i)
110 continue
115 cvntinue
120 ret irn

end
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c
subroutine check(phi,val,vec~periodlerror)

c
c - checks the transformation from phi Lo jordon normal form
c

implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)
dimension xww(2),xwc(2),phi(4,4)
complex*16 ww,wc,ejt(4,4),vec(4,4),v~al(4)
complex*16 fe(4,4),pf(4,4),pi(4,4),piv(4,4)
equivalence (ww, xww)
equivalence (wc, xwc)

c
c *********CALCULATE eýiJt)
c

do 100 i = 1,4
do 120 j = 1,4

ejt(j,i) = (0.dO, 0.dO)
120 continue

ejt(i,i) =val(i)
100 continue

if(ejt(3,3) .eq. (l~dO, 0.dO)) then
xww(1) = period
xww(2) = 0.dO
ejt(3,4) =ww

else
endif

c
c *******FIND phi~f - f*e^(.,t) ***********

c
do 200 i =1,4

do 200 j = 1,4
fe(i,j) = (0.dO, 0.dO)
pf(i,j) = (0.dO, 0.dO)
do 200 k =1,4

fe(i,j) = fe(i,j) + vec(i,k)*ejt(k,j)
pf(i,j) = pf(i,j) + phi(i,k)*vec(k,j)

203 c:ontinue
error = (0.dO, 0.dO)
ww =error
do 220 i = 1,4

do 220 j =1,4
wc = pf(j,i) - fe(j,i)
if(dabs(xwc(l)) gqt. dabs(xww(l))) xww(1) = xwc(1)
ifliabs(xwc(2)) .gt. dabs(xww(2))) xww(2) = xwc(2)

220 continue
c
c FIND (phi-e^(Jt)*I)*vec
c

do 300 i = 1,4
do 320 j =1,4

do 340 k =1,4
pi (k, j) =phi (k, j)
piv(j,k) (0.dO, 0.dO)

340 continue
pi(j,j) =phi(j,j) - val(i)

320 continue
do 360 j =1,4

do 360 k =1,4
piv(j,i) = piv(j,i) + pi(j,k)*vec(k,i)

360 continue
300 continue

if(ejt(3,4) .eq. (0.dO, 0.dO)) goto 400
piv(2.4) =piv(2,4) - vec(2,3)*period
piv(3.4) =piv(3,4) - vec(3,3)*period

do 400 i = 1,4
do 400 j 1,4

wc =piv(jfi)

if(dabsixwc(1)) .gt. dabs(xww(1))) xww(l) = xwc(1)
if(dabs(xwc(2)) .gt. dabs(xww(2))) xww(2) =xwc(2)

400 continue
error = ww

2 format(lx,il,2(2x,d24.17))
3 format(2x,2(2x,d24.17))

return
end
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C

subroutine symplec(vec,tzvec,eror)
C

c - checks if eigenvector matrix is symplectic
C

implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)

c
dimension z(4,4),xww(2),xwc(2)

c
complex*16 vec (4,4), tvec (4,4), zvec (4,4), tzvec (4,4)
complex*16 error,wwfwc

c
equivalence (ww, xww)
equivalence (wc, xwc)

c
data z/ 0.dO, -1.dO, 0.dO, 0.dO,
I l.d0, 0.d0, 0.d0, 0.d0,
2 0.d0, 0.d0, 0.d0, -1.dO,
3 0.d0, 0.d0, 1.d0, 0-dOt

c
c **********TRANSPOSE vec, STORE AS tvec
c

do 440 i =1,4
do 440 j = 1,4

tvec(i,j) = vec(j,i)
440 continue

c
c ********CALCULATE Z VEC
c

do 480 i = 1,4
do 480 j = 1,4

zvec(i,j) = (0.dO, 0.dO)
do 480 k =1,4

zvec(i,j) =zvec(i,j) + z(i,k)*vec(k,j)
480 continue

c
c T
c CALCULATE VEC *Z VEC =Z
c

do 500 i = 1,4
do 500 j = 1,4

tzvec(i,j) = (0.dO, 0.dO)
do 500 k = 1,4

tzvec(i,j) = tzvec(i,j) + tvec(irk)*zvec(k,j)
500 continue

c
c calculate max error
c

error = (0.dO, 0.dO)
ww error
do 600 i = 1,4

do 600 j =1,4
wc =tzvec(j,i) - z(j,i)
if(dabs(xwc(1)) .gt. dabs(xww(1))) xww(1) =xwc(l)
if(dabs(xwc(2)) .gt. dabs(xww(2))) xww(2) = xwc(2)

600 continue
error = ww

2 forrnat(1x,il,2(2x,d24.17))
3 forrnat(2x,2(2xld24.17))

return
end
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C
subroutine real (vec,xj,vecnew,xjnewlitype)

C
c - converts imaginary E and J to real E and J
C

implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)

C
dimension xwc(2),xww(2),itype (2)

C

complex*16 vec(4,4),xj(4,4),vecnew(4, 4),xjnew(4,4)
complex*16 ww,wc,t(4,4),ti(4,4),temp(4,4)
complex*16 vec2 (4,4), xj2 (4,4)

c
equivalence (w,-,xwc)
equivalence (ww, xww)

c
c REMOVE IMAGINARY POINCARE EXPONENTS ****

c
c ******** CALCULATE T AND T INVERSE
c

do 20 i = 1,4
do 25 j = 1,4

t(i,j) (0.dO, 0.d0)
ti(i,j) (0.dO, 0.dO)

25 continue
t(i,i) =(l.dO, 0.dO)
ti(i,i) (1.dO, 0.dO)

20 continue
do 40 i1 1,3,2

iii =int((i+l)/2)

if (itype(iii) .eq. 2) then
t(i,i) = (.5d0, -.5d0)
t(i,i+l) = (.5d0, -.5d0)
t(i+l,i) = (-.5d0, -.5d0)
t(i+I,i+l) = (.5d0, -5d0)
ti(iri) =(.5d0, .5d0)
ti(iei+l) = (-.5d0, .5d0)
ti(i+1,i) = (.5d0, .5d0)
ti(i+1,i+1) = (.5d0, -.5d0)

else
endif

40 continue
c
c *******CALCULATE NEW E AND J MATRICES
c

do 60 i = 1,4
do 60 j = 1,4

temp(i,j) = (0.d0, 0.dO)
do 60 k = 1,4

60 cotinue temp(i,J) = temp(i,j) + t(i,k)*xj(k,j)

608 continue
do 80 i = 1,4

do 2(~j 80 jOdO 1,4
vec2(i,j) = (0.dO, 0.dO)

do 80 k = 1,4
vec2(i,j) =vec2(i,j) + vec(i,k)*ti(k,j)

80 ontnue xj2(i,j) =xj2(i, j) + temp(i,k)*ti(k, j)

c ******** REMOVE IMAGINARY EIGENVECTORS
c
c **~*****CALCULATE T AND T INVERSE
c

do 100 1 = 1,4
do 105 j =1,4

t(i,j) =(0.dO, 0.dO)
ti(i,j) (0.dO, 0.dO)

105 continue
t(i,i) (l.dO, 0.dO)
ti(i,i) (1.dO, 0.dO)

100 continue
do 120 i = 1,3,2

itest = 0
do 140 j 1,4

wc =vec2(j,i)
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if (dabs(xwc(2)) .gt. 1.d-10) itest =1

140 continue
if (itest .eq. 1) then

t(i,i) = (0.dO, 0.dO)
t(i,i+1) = (0.dO, 1.dO)
t(i+1,i) = (0.dO, l.dO)
tf~i+1,i+l) = (0.dO, 0.dO)
ti(i,i) = (0.dO, 0.dO)
ti(i,i41) =(0.dO, -1.dO)
ti (i+1, i) =(0.dO, -1.dO)
ti (i+l, i+1) = (0.dO, 0.dO)

iii = int((i+1)/2)
if(itype(iii) .eq. 0) itype(iii) =-1

else
endif

120 continue
c
C ******** CALCULATE NEW EIGENVECTOR MATRIX AND NEW J MATRIX
C

do 180 i = 1,4
do 180 j =1,4

temp(i,j) =(0.dO, 0.dO)
do 180 k = 1,4

temp(i,j) =texnp(i,j) + t(i,k)*xj2(k,j)
180 continue

do 200 i = 1,4
do 200 j = 1,4

vecnew(i,j) = (0.dO, 0.d0)
xjnew(i,j) =(0.dO, 0.d0)
do 200 k = 1,4

vecnew(i,j) =vecnew(i,j) + vec2(i,k)*ti(k,j)
xjnew(i,j) =xjnew(i,j) + temp(i,k)*ti(k,j)

200 continue

return
end
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c
subroutine fourier(f,ck, sk, n)

c
c - subroutine to create set of 100 fourier coefficients for a
c given periodic variable
c

implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)

c
dimension f(200),ck(101),sk(101)

c
pi = dacos(-1.dO)
twopi = 2.dO*pi
alpha = twopi/dble(2*n)
n2ml = 2*n-1

c
c ************** ORDER K LOOP *
c

do 500 k = 0,n
c
c ************** COSINE SUM *****************
c

ck(k+l) = 0.dO
do 200 j 0,n2ml

ck(k+l) = ck(k+l) + f(j+l)*dcos(dble(k*j)*alpha)
200 continue

ck(k+l) = ck(k+l)/dble(n)
c
c * SINE SUM ************************

c
if(k .eq. 0) goto 500
if(k .eq. n) goto 500
sk(k+l) = 0.dO
do 400 j l,n2ml

sk(k+l) = sk(k+l) + f(j+l)*dsin(dble(k*j)*alpha)
400 continue

sk(k+l) = sk(k+l)/dble(n)
500 continue

c
c *********** CORRECT FIRST AND LAST COSINE COEFFICIENT *
c

ck(l) = .5d0*ck(1)
ck(n+l) = .5d0*ck(n+l)

return
end
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c
subroutine rhs(k)

c
"c canonical EOM and EOV, 4th order system
"c Phi matrix stored by cols, end to end
c

common /data/ xmu, xmua
common /ham/ t,x(20,4),f(20,4),err(20),hh,nn,mode

c
external h

c
implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)

c
dimension x(20,4),f(20,4),err(20),xx(4),z(4,4),grdh(4,4),A(4,4)

c
data z/ 0.dO, -l.dO, 0.dO, 0.dO,

1 l.d0, 0.dO, 0.dO, 0.dO,
2 0.dO, 0.dO, 0.dO, -l.dO,
3 0.dO, 0.dO, l.dO, 0.dO/

c
c ********************* EXTRACT STATE *
c

do 10 i = 1,4
10 xx(i) = x(i,k)

c
c ****************** EQUATIONS OF MOTION *
c

f(l,k) =h(xx,1,2,0,0,0,0)
f(2,k) -h(xx, 1,1,0,0,0,0)
f(3,k) = h(xx, 1,4,0, 0,0,0)
f(4,k) =-h(xx,l,3,0,0,0,0)

c
if(mode .eq. 0) return

c
c *********** CALCULATE ORDER 2 GRADIENT MATRIX *
c

do 20 i = 1,4
do 20 j = 1,4

grdh(i,j) = h(xx,2,i,J,0,0,0)
20 continue

c
c ******************** MATRIX MPY BY Z *
c

do 30 i = 1,4
do 30 ii = 1,4

A(i,ii) = 0.dO
do 30 j = 1,4

A(i,ii) = A(i,ii) f z(i,j)*grdh(j,ii)
30 continue

c
c ********************* CALCULATE A PHI *
c
c row loop

do 35 i = 1,4
c col loop

do 35 ii = 1,4
iJ = 4*11+1
f(ij,k) = 0.dO
do 35 j = 1,4

f(ij,k) = f(ijk) * A(i,j)*x(4*ii+j,k)
35 continue

return
end
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subroutine rhs(k)
c
"c canonical EOM and EOV, 4th order system
"c Phi matrix stored by cols, end to end
c

common /data/ xmu,xmua
common /ham/ t,x(20,4),f(20,4),err(20),hh,nn,mode
common /fdat/ xj(4,4)

C
external h

c
implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)

c
dimension x(20, 4), f(20,4) ,err(20) ,xx(4) , z (4,4)
dimension grdh(4,4),a(4,4),vec(4,4)
dimension xj(4,4),fdot(4,4)
dimension fl(4,4),f2(4,4)
data z/ 0.dO, -l.dO, O.dO, 0.d0,

1 1.d0, 0.d0, 0.dO, 0.dO,
2 0.d0, 0.d0, 0.dO, -l.dO,
3 0.d0, 0.d0, l.dO, 0.d0/

c ****************** EXTRACT STATE *****************
c

do 10 i = 1,4
xx(i) = x(i,k)

10 continue
c ******************* EQUATIONS OF MOTION *********
c

f(l,k) = h(xx,1,2,0,0,0,0)
f(2,k) = -h(xx,1,l,0,0,0,0)
f(3,k) = h(xx,1,4,0,0,0,0)
f(4,k) = -h(xx, 1, 3, 0, 0, 0,0)

c
if(mode .eq. 0) return

c CALCULATE ORDER 2 GRADIENT MATRIX ********
c

do 20 i = 1,4
do 20 j = 1,4

grdh(i,j) = h(xx,2,i,j,0,0,0)
20 continue

c * * * * MATRIX MPY BY Z * *************
c

do 30 i = 1,4
do 30 ii = 1,4

a(i,ii) = 0.dO
do 30 j = 1,4

a(i,ii) = a(i,ii) + z(i,j)*grdh(j,ii)
30 continue

c **************** CALCULATE A*F AND F*J *****************
c

do 33 i = 1,4
do 33 j = 1,4

vec(j,i) = x(i*4+j,k)
33 continue

c row loop
do 35 i = 1,4

c col loop
do 35 j = 1,4

fl(i,j) = 0.dO
f2(i,j) = 0.dO
do 35 ii = 1,4

fl(i,j) = fl(i,j) + a(i,ii)*vec(ii,j)
f2(i,j) = f2(i,j) + vec(i, ii)*xj(ii, j)

35 continue
do 36 i = 1,4

do 36 j = 1,4
fdot(i,j) = fl(i,j)-f2(i,j)

36 continue
do 37 i = 1,4

do 37 j = 1,4
f(i*4+j,k) = fdot(j,i)

37 continue

return
end
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c
subroutine rhs(k)

C
"c calculate rhs for nearly-periodic eom, using
"c expanded hamiltonian
c
c canonical EOM and EOV, 4th order system
c

common /datarhs/ wO,wl,w2,ck(20,100),sk(20,100),itype(2)
common /ham/ t,x(20,4),f(20,4),err(20),hh,nn,mode

C
implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)

c
dimension x(20,4),f(20,4),err(20)
dimension coss(100),sinn(100),itype(2),w(2)
dimension ck(20,100),sk(20,100),c(20),b(4),bdot (4)
w(l) =Wl
w(2) = w2

c
c****** GENERATE SIN(l to 50 *wO)AND COS(1 to 50 *wO)

c
coss(l) = dcos(wO*t)
sinn(l) = dsin(wO*t)
coss(2) = 2.d0*coss(l)*coss(l)-l.d0
sinn(2) = 2.dO*sinn(l)*coss(l)
do 100 i =3,100

coss(i) = 2.d0*coss(i-1)*coss(l)-coss(i-2)
sinn(i) = 2.d0*sinn(i-1)*coss(1)-sinn(i-2)

100 continue
c
c ******RECONSTRUCT PERIODIC FUNCTION COEFFICIENTS *********

c
do 200 i1 1,20

c(i) =ck(i,l)

do 200 j =1,99

c(i) c(i) + ck(i,j+1)*coss(j) + sk(i,j+l)*sinn(j)
200 continue

c
c *******ESTABLISH MODAL VECTORS ************

c
do 240 i1 1,4

b(i) =x(i,k)

240 continue
c
c ********CALCULATE BDOT AND ESTABLISH EOM
c

bdot(1) =+l.dO*b(1)*b(l)*c(2) + 2.dO*b(l)*b(2)*c(5)
& + l.dO*b(1) *b(3) *c(6) + l.dO*b(l) *b(4) *c(7)
& + 3.dO*b(2)*b(2)*c(l1) + 2.dO*b(2)*b(3)*c(12)
& + 2.dO*b(2)*b(4)*c(13) + l.dO*b(3)*b(3)*c(14)
& + l.dO*b(3)*b(4)*c(15) + l.dO*b(4)*b(4)*c(l6)
bdot(2) -3.d0*b(l)*b(l)*c(l) - 2.dO*b(l)*b(2)*c(2)

& - 2.dO*b(l)*b(3)*c(3) - 2.dO*b(l)*b(4)*c(4)
& - l.dO*b(2)*b(2)*c(5) - l.dO*b(2)*b(3)*c(6)
& - l.dO*b(2)*b(4)*c(7) - l.dO*b(3)*b(3)*c(8)
& - l.dO*b(3)*b(4)*c(9) - l.dO*b(4)*b(4)*c(10)
bdot(3) =l.dO*b(l)*b(l)*c(4) + l.dO*b(1)*b(2)*c(7)

& + 1.dO*b(1)*b(3)*c(9) + 2..dO*b(l)*b(4)*c(l0)
& + l.dO*b(2)*b(2)*c(13) + l.dO*b(2)*b(3)*c(15)
& + 2.dO*b(2) *b(4) *c(16) + 1.dO*b(3) *b(3) *c(18)
& + 2.dO*b(3)*b(4)*c(19) + 3.dO*b(4)*b(4)*c(20)
bdot(4) = l.d0*b(1)*b(1)*c(3) - 1.dO*b(l)*b(2)*c(6)

& - 2.dO*b(l)*b(3)*c(8) - 1.dO*b(l)*b(4)*c(9)
& - l.dO*b(2)*b(2)*c(12) - 2.dO*b(2)*b(3)*c(14)
& - l.dO*b(2)*b(4)*c(15) - 3.dO*b(3)*b(3)*c(17)
& - 2.dO*b(3)*b(4)*c(18) - 1.dO*b(4)*b(4)*c(19)

do 250 i = 1,3,2
iii = int((i+l)/2)
if (itype(iii) .eq. -1) then

bdot(i+l) = bdot(i+l) + b(i)
elseif (itype(iii) .eq. 0) then

bdot(i) = bdot(i) + b(i+l)
elseif (itype(iii) .eq. 1) then

bdot(i) = bdot(i) + w(iii)*b(i)
bdot(i+l) = bdot(i+1) - w(iii)*b(i+1)

elseif (itype(iii) .eq. 2) then
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bdot(i) = bdot(i) + w(iii)*b(i+l)
bdot(i+l) = bdot(i+l) - w(iii)*b(i)

else
endif

250 continue
do 260 i = 1,4

f(i,k) = bdot (i)
260 continue

return
end
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